14.已知扇形的半徑為3,圓心角為$\frac{2π}{3}$,則扇形的弧長為( 。
A.B.C.360D.540

分析 利用弧長公式計算即可得答案.

解答 解:l=αr=$\frac{2π}{3}$×3=2π.
故選:B.

點評 本題考查了弧長公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.記區(qū)間(x1,x2)的長度為L=x2-x1,已知函數(shù)$f(x)=\frac{1}{3}a{x^2}+\frac{1}{2}b{x^2}+cx+d$(a>b>c),其圖象在點(1,f(1))處的切線斜率為0,則函數(shù)f(x)單調(diào)遞減區(qū)間的長度L的取值范圍為( 。
A.$({1,\frac{3}{2}})$B.$({\frac{3}{2},3})$C.(1,3)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在平面直角坐標(biāo)系中,正方形的中心坐標(biāo)為(1,0),其一邊AB所在直線的方程為x-y+1=0,則邊CD所在直線的方程為x-y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若命題“?x0∈R,使得x02+(a-1)x0+1≤0”為真命題,則實數(shù)a的范圍為a≤-1或a≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.命題“存在x∈R,使得x2-x+2<0”的否定是任意x∈R,都有x2-x+2≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(Ⅰ)計算:cos(-$\frac{19π}{6}$);
(Ⅱ)已知x∈[$\frac{π}{2}$,$\frac{3π}{2}$],且sinx=-$\frac{3}{5}$,求tanx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)p:實數(shù)t滿足t2-5at+4a2<0(其中a≠0),q:方程$\frac{{x}^{2}}{t-2}$+$\frac{{y}^{2}}{t-6}$=1表示雙曲線.
(Ⅰ)若a=1,且p∧q為真命題,求實數(shù)t的取值范圍;
(Ⅱ)若q是p的充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.我們將一個四面體四個角中直角三角形的個數(shù)定義為此四面體的直度,在四面體ABCD中,AD⊥平面ABC,AC⊥BC,則四面體ABCD的直度為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直角坐標(biāo)平面內(nèi),過點P(2,1)且與圓x2-x+y2+2y-4=0相切的直線( 。
A.有兩條B.有且僅有一條C.不存在D.不能確定

查看答案和解析>>

同步練習(xí)冊答案