分析 (1)由橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,過(guò)橢圓右焦點(diǎn)F作兩條相互垂直的弦,當(dāng)其中一條弦所在直線斜率為0時(shí),兩弦長(zhǎng)之和為6,列出方程組,求出a,b,由此能求出橢圓方程.
(2)設(shè)直線AB為:y=kx+m,由$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}=4y}\end{array}\right.$,得x2-4kx-4m=0,由此利用韋達(dá)定理、直線垂直推導(dǎo)出直線AB過(guò)拋物線C1的焦點(diǎn)F,再由$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,得(1+2k2)x2+4kx-2=0,由此利用弦長(zhǎng)公式能求出弦|CD|的最大值.
解答 解:(1)∵橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,過(guò)橢圓右焦點(diǎn)F作兩條相互垂直的弦,
當(dāng)其中一條弦所在直線斜率為0時(shí),兩弦長(zhǎng)之和為6,
∴$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{2a+\frac{2^{2}}{a}=6}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a=2,b=c=$\sqrt{2}$,
∴橢圓方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$.
(2)設(shè)直線AB為:y=kx+m,A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),
由$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}=4y}\end{array}\right.$,得x2-4kx-4m=0,
則x1+x2=4k,x1x2=-4m,
由x2=4y,得${y}^{'}=\frac{x}{2}$,
故切線PA,PB的斜率分別為${k}_{PA}=\frac{{x}_{1}}{2}$,kPB=$\frac{{x}_{2}}{2}$,
再由PA⊥PB,得kPA•kPB=-1,
∴$\frac{{x}_{1}}{2}•\frac{{x}_{2}}{2}=\frac{{x}_{1}{x}_{2}}{4}=\frac{-4m}{4}=-m=-1$,
解得m=1,這說(shuō)明直線AB過(guò)拋物線C1的焦點(diǎn)F,
由$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,得(1+2k2)x2+4kx-2=0,
∴|CD|=$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{(4k)^{2}-4(1+2{k}^{2})•(-2)}}{1+2{k}^{2}}$=$\sqrt{1+{k}^{2}}•\frac{\sqrt{8(1+4{k}^{2})}}{1+2{k}^{2}}$≤3.
當(dāng)且僅當(dāng)k=$±\frac{\sqrt{2}}{2}$時(shí)取等號(hào),
∴弦|CD|的最大值為3.
點(diǎn)評(píng) 本題考查橢圓方程的求法,考查弦長(zhǎng)的最大值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)、韋達(dá)定理、弦長(zhǎng)公式、直線與橢圓位置關(guān)系等知識(shí)點(diǎn)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 2 | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,-1) | C. | (3,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,+∞) | B. | (0,+∞) | C. | (-∞,1) | D. | (-∞,0) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com