4.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+$\sqrt{3}$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,角A滿足f(A)=1+$\sqrt{3}$,若a=3,sinB=2sinC,求b的值.

分析 (1)由誘導公式與輔助角公式得到f(x)的解析式,由此得到單調(diào)增區(qū)間.
(2)由f(A)=1+$\sqrt{3}$,得A=$\frac{π}{3}$,由恒等式得到B=$\frac{π}{2}$,所以得到b.

解答 解:(1)∵f(x)=$\sqrt{3}$sin2x+2sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+$\sqrt{3}$.
=$\sqrt{3}$sin2x+sin(2x+$\frac{π}{2}$)+$\sqrt{3}$.
=2sin(2x+$\frac{π}{6}$)+$\sqrt{3}$,
由-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,得:-$\frac{π}{3}$+kπ≤x≤kπ+$\frac{π}{6}$,(k∈Z),
∴函數(shù)f(x)的單調(diào)遞增區(qū)間是[-$\frac{π}{3}$+kπ,kπ+$\frac{π}{6}$],(k∈Z).
(2)∵f(A)=1+$\sqrt{3}$,
∴A=$\frac{π}{3}$,
∵sinB=2sinC=2sin($\frac{2π}{3}$-B),
∴cosB=0,即B=$\frac{π}{2}$,
∴由正弦定理得:$\frac{a}{sinA}$=$\frac{sinB}$,
∴b=$\frac{\sqrt{3}}{2}$.

點評 本題考查三角函數(shù)的化簡及由解析式求單調(diào)區(qū)間,以及正弦定理的應用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知集合A={x|-1<x<2},B={x|x>log2m},若A⊆B,則實數(shù)m的取值范圍是(  )
A.(0,4]B.($\frac{1}{2}$,1]C.(0,$\frac{1}{2}$]D.(-∞,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.$\underset{lim}{x→1}$$\frac{{x}^{n-1}}{x-1}$=( 。
A.0B.1C.nD.不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.直線y=$\sqrt{3}$x+1被圓x2+y2-8x-2y+1=0所截得的弦長等于4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.$sin2α=\frac{24}{25}$,$0<α<\frac{π}{2}$,則$\sqrt{2}cos(\frac{π}{4}-α)$的值為( 。
A.$-\frac{1}{5}$B.$\frac{1}{5}$C.$-\frac{7}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=2$\sqrt{3}$cosωxcos(ωx+$\frac{π}{2}$)+2sin2ωx(ω>0)的最小正周期為π.
(Ⅰ)求ω的值和函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間$[{\frac{π}{3},π}]$上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{ln(1+x)}{x}$(x>0)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)證明:f(x)$>\frac{2}{x+2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.將一顆質(zhì)地均勻的骰子投擲兩次,第一次出現(xiàn)的點數(shù)記為a,第二次出現(xiàn)的點數(shù)記為b,設(shè)任意投擲兩次使直線l1:x+ay=3,l2:bx+6y=3平行的概率為P1,不平行的概率為P2,若點(P1,P2)在圓(x-m)2+y2=$\frac{65}{72}$的內(nèi)部,則實數(shù)m的取值范圍是(-$\frac{1}{6}$,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設(shè)數(shù)列{an}是首項為1,公差為$\frac{1}{2}$的等差數(shù)列,Sn是數(shù)列{an}的前n項的和,
(1)若am,15,Sn成等差數(shù)列,lgam,lg9,lgSn也成等差數(shù)列(m,n為整數(shù)),求am,Sn和m,n的值;
(2)是否存在正整數(shù)m,n(n≥2),使lg(Sn-1+m),lg(Sn+m),lg(Sn+1+m)成等差數(shù)列?若存在,求出m,n的所有可能值;若不存在,試說明理由.

查看答案和解析>>

同步練習冊答案