5.給出下列四個(gè)命題:
①f(x)=sin(2x-$\frac{π}{4}$)的對(duì)稱軸為x=$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z;
②函數(shù)f(x)=sinx+$\sqrt{3}$cosx的最大值為2;
③函數(shù)f(x)=sinxcosx-1的周期為2π;
④函數(shù)f(x)=sin(x+$\frac{π}{4}$)在[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函數(shù).
其中正確命題的個(gè)數(shù)是B
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè).

分析 求出函數(shù)的對(duì)稱軸判斷①的正誤;公式的最值判斷②的正誤;函數(shù)的周期判斷③的正誤;函數(shù)的單調(diào)性判斷④的正誤;

解答 解:f(x)=sin(2x-$\frac{π}{4}$)的對(duì)稱軸滿足:
2x-$\frac{π}{4}$=kπ+$\frac{π}{2}$,即x=$\frac{kπ}{2}+\frac{3π}{8}$,k∈Z;故①正確.
函數(shù)f(x)=sinx+$\sqrt{3}$cosx=2sin(x+$\frac{π}{3}$),其最大值為2,故②正確.
函數(shù)f(x)=sinxcosx-1=$\frac{1}{2}$sin2x-1,其周期為π,故③錯(cuò)誤.
函數(shù)f(x)=sin(x+$\frac{π}{4}$)在[-$\frac{π}{2}$,$\frac{π}{4}$]上是增函數(shù),在[$\frac{π}{4}$,$\frac{π}{2}$]上是減函數(shù).
函數(shù)f(x)=sin(x+$\frac{π}{4}$)在[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函數(shù),故④錯(cuò)誤.
故只有①②正確.
故選:B.

點(diǎn)評(píng) 本題考查三角函數(shù)的對(duì)稱性、周期性、單調(diào)性以及函數(shù)的最值的應(yīng)用,命題的真假的判斷,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,在正方體ABCD-A1B1C1D1中,棱長(zhǎng)為1,點(diǎn)P為線段A1C上的動(dòng)點(diǎn)(包含線段端點(diǎn)),則下列結(jié)論正確的①②④
①當(dāng)$\overrightarrow{{A_1}C}=3\overrightarrow{{A_1}P}$時(shí),D1P∥平面BDC1;
②當(dāng)$\overrightarrow{{A_1}C}=3\overrightarrow{{A_1}P}$時(shí),A1C⊥平面D1AP;
③∠APD1的最大值為90°;
④AP+PD1的最小值為$\frac{{2\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若方程ax2+bx+1=0的兩個(gè)根分別為$\frac{1}{2}$和1,則不等式x2+bx+a<0的解集為(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.要得到函數(shù)y=3sin(2x+$\frac{π}{5}$)圖象,只需把函數(shù)y=3sin2x圖象(  )
A.向左平移$\frac{π}{5}$個(gè)單位B.向右平移$\frac{π}{5}$個(gè)單位
C.向左平移$\frac{π}{10}$個(gè)單位D.向右平移$\frac{π}{10}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出S的值為( 。
A.31B.15C.7D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)復(fù)數(shù)z=$\frac{1+i}{1-i}$,則$\overline{z}$的實(shí)部是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,若過(guò)F且傾斜角為60°的直線分別與雙曲線的左右兩支相交,則此雙曲線離心率的取值范圍是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ln(1-x),x<1}\\{\frac{2}{x-1},x>1}\end{array}\right.$,函數(shù)g(x)=$\frac{k}{{x}^{2}}$(k∈N*),若函數(shù)y=f(x)-g(x)僅有1個(gè)零點(diǎn),則正整數(shù)k的最大值是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖是一個(gè)算法流程圖,若輸入x的值為$\frac{1}{16}$,則輸出的y的值是( 。
A.-6B.-2C.2D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案