【題目】為了參加師大附中第30屆田徑運動會的開幕式,高三年級某6個班聯合到集市購買了6根竹竿,作為班期的旗桿之用,它們的長度分別為3.8,4.3,3.6,4.5,4.0,4.1(單位:米).
(1)若從中隨機抽取兩根竹竿,求長度之差不超過0.5米的概率;
(2)若長度不小于4米的竹竿價格為每根10元,長度小于4米的竹竿價格為每根元.從這6根竹竿中隨機抽取兩根,若期望這兩根竹竿的價格之和為18元,求的值.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知兩定點、,⊙C的方程為.當⊙C的半徑取最小值時:
(1)求出此時m的值,并寫出⊙C的標準方程;
(2)在x軸上是否存在異于點E的另外一個點F,使得對于⊙C上任意一點P,總有為定值?若存在,求出點F的坐標,若不存在,請說明你的理由;
(3)在第(2)問的條件下,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數滿足:對任意,,都有成立,且時,.
(1)求的值,并證明:當時,;
(2)判斷的單調性并加以證明;
(3)若函數在上遞減,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,直線經過點A (1,0).
(1)若直線與圓C相切,求直線的方程;
(2)若直線與圓C相交于P,Q兩點,求三角形CPQ面積的最大值,并求此時直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】衡州市臨棗中學高二某小組隨機調查芙蓉社區(qū)160個人,以研究這一社區(qū)居民在20:00-22:00時間段的休閑方式與性別的關系,得到下面的數據表:
休閑方式 性別 | 看電視 | 看書 | 合計 |
男 | 20 | 100 | 120 |
女 | 20 | 20 | 40 |
合計 | 40 | 120 | 160 |
下面臨界值表:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(Ⅰ)將此樣本的頻率估計為總體的概率,隨機調查3名在該社區(qū)的男性,設調查的3人在這一時間段以看書為休閑方式的人數為隨機變量,求 的分別列和期望;
(Ⅱ)根據以上數據,能否有99%的把握認為“在20:00-22:00時間段的休閑方式與性別有關系”?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“奶茶妹妹”對某時間段的奶茶銷售量及其價格進行調查,統計出售價元和銷售量杯之間的一組數據如下表所示:
價格 | 5 | 5.5 | 6.5 | 7 |
銷售量 | 12 | 10 | 6 | 4 |
通過分析,發(fā)現銷售量對奶茶的價格具有線性相關關系.
(Ⅰ)求銷售量對奶茶的價格的回歸直線方程;
(Ⅱ)欲使銷售量為杯,則價格應定為多少?
附:線性回歸方程為,其中,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn=2n2,{bn}為等比數列,且a1=b1,b2(a2-a1)=b1.
(1)求數列{an}和{bn}的通項公式;
(2)設cn=,求數列{cn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(為自然對數的底數), ,.
(1)求曲線在處的切線方程;
(2)討論函數的極小值;
(3)若對任意的,總存在,使得成立,求實數的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com