【題目】設(shè)函數(shù),數(shù)列滿足,,).

(1)求數(shù)列的通項公式;

(2)設(shè),若恒成立,求實數(shù)的取值范圍;

(3)是否存在以為首項,公比為,)的數(shù)列,使得數(shù)列的每一項都是數(shù)列的不同的項,若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,請說明理由

【答案】(1);(2)(3)存在,

【解析】

試題分析:(1)由,得出,即可得到數(shù)列的通項公式;(2)當(dāng)時,化簡,當(dāng)時,,得到的表達式,再由,,即可求解實數(shù)的取值范圍;(3)由(1)知,分別以分類討論,即可得到結(jié)論.

試題解析:(1),

(2)當(dāng))時,

;

當(dāng))時,

,

,

綜上:).

,,只需研究即可,

,,

(3)由(1)知,

當(dāng),則為常數(shù)列,不符合題意;

當(dāng)除首項之外各項均為偶數(shù),不存在

當(dāng),,,

當(dāng),除首項之外各項均為偶數(shù),不存在

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差

10

11

13

12

8

發(fā)芽數(shù)

23

25

30

26

16

(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25”的概率;

(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出關(guān)于的線性回歸方程.

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在D上的函數(shù)f(x)滿足:對任意x∈D,存在常數(shù)M>0,都有-M<f(x)<M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界。

(Ⅰ)判斷函數(shù)f(x)=-2x+2,x∈[0,2]是否是有界函數(shù),請說明理由;

(Ⅱ)若函數(shù)f(x)=1++,x∈[0,+∞)是以3為上界的有界函數(shù),求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.

1求橢圓的標(biāo)準(zhǔn)方程;

2已知點,和面內(nèi)一點,過點任作直線與橢圓相交于兩點,設(shè)直線的斜率分別為,若,試求滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校名教師參加我縣六城同創(chuàng)干部職工進網(wǎng)絡(luò),服務(wù)群眾進社區(qū)活動,他們的年齡均在25歲至50歲之間,按年齡分組:第一組,第二組,第三組,第四組,第五組,得到的頻率分布直方圖如圖所示:

上表是年齡的頻數(shù)分布表.

(1)求正整數(shù)的值;

(2)根據(jù)頻率分布直方圖估計我校這名教師年齡的中位數(shù)和平均數(shù);

(3)從第一、二組用分層抽樣的方法抽取4人,現(xiàn)在從這4人中任取兩人接受咸豐電視臺的采訪,求從這4人中選取的兩人年齡均在第二組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,

(1)在上確定一點,使得平面,并求的值;

(2)在(1)條件下,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有一條光線從射出,并且經(jīng)軸上一點反射.

(1)求入射光線和反射光線所在的直線方程(分別記為);

(2)設(shè)動直線,當(dāng)點的距離最大時,求所圍成的三角形的內(nèi)切圓(即:圓心在三角形內(nèi),并且與三角形的三邊相切的圓)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線)與橢圓相交所得的弦長為

)求拋物線的標(biāo)準(zhǔn)方程;

)設(shè),上異于原點的兩個不同點,直線的傾斜角分別為,當(dāng),變化且為定值)時,證明:直線恒過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,過橢圓右頂點和上頂點的直線與圓相切.

(1)求橢圓的方程;

(2)設(shè)是橢圓的上頂點,過點分別作直線交橢圓兩點,設(shè)這兩條直線的斜率分別為,且,證明:直線過定點.

查看答案和解析>>

同步練習(xí)冊答案