(2012•朝陽區(qū)一模)已知函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R,都有f(x+2)=f(x).當(dāng)0≤x≤1時,f(x)=x2.若直線y=x+a與函數(shù)y=f(x)的圖象在[0,2]內(nèi)恰有兩個不同的公共點,則實數(shù)a的值是( 。
分析:先作出函數(shù)f(x)在[0,2]上的圖象,再分類討論,通過數(shù)形結(jié)合與方程思想的應(yīng)用即可解決問題.
解答:解:∵f(x)是定義在R上的偶函數(shù),當(dāng)0≤x≤1時,f(x)=x2,
∴當(dāng)-1≤x≤0時,0≤-x≤1,f(-x)=(-x)2=x2=f(x),
又f(x+2)=f(x),∴f(x)是周期為2的函數(shù),
又直線y=x+a與函數(shù)y=f(x)的圖象在[0,2]內(nèi)恰有兩個不同的公共點,其圖象如下:

當(dāng)a=0時,直線y=x+a變?yōu)橹本l1,其方程為:y=x,顯然,l1與函數(shù)y=f(x)的圖象在[0,2]內(nèi)恰有兩個不同的公共點;
當(dāng)a≠0時,直線y=x+a與函數(shù)y=f(x)的圖象在[0,2]內(nèi)恰有兩個不同的公共點,由圖可知,直線y=x+a與函數(shù)y=f(x)相切,切點的橫坐標(biāo)x0∈[0,1].
y=x+a
y=x2
得:x2-x-a=0,由△=1+4a=0得a=-
1
4
,此時,x0=x=
1
2
∈[0,1].
綜上所述,a=-
1
4
或0
故選D.
點評:本題考查函數(shù)的周期性,函數(shù)的奇偶性與求方程的解,考查數(shù)形結(jié)合思想與方程思想的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)一模)某次有1000人參加的數(shù)學(xué)摸底考試,其成績的頻率分布直方圖如圖所示,規(guī)定85分及其以上為優(yōu)秀.
(Ⅰ)下表是這次考試成績的頻數(shù)分布表,求正整數(shù)a,b的值;
區(qū)間 [75,80) [80,85) [85,90) [90,95) [95,100]
人數(shù) 50 a 350 300 b
(Ⅱ)現(xiàn)在要用分層抽樣的方法從這1000人中抽取40人的成績進(jìn)行分析,求其中成績?yōu)閮?yōu)秀的學(xué)生人數(shù);
(Ⅲ)在(Ⅱ)中抽取的40名學(xué)生中,要隨機選取2名學(xué)生參加座談會,記“其中成績?yōu)閮?yōu)秀的人數(shù)”為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)一模)函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R,都有f(x+2)=f(x).當(dāng)0≤x≤1時,f(x)=x2.若直線y=x+a與函數(shù)y=f(x)的圖象有兩個不同的公共點,則實數(shù)a的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)一模)已知函數(shù)f(x)=
(
1
2
)
x
+
3
4
x≥2
log2x,0<x<2
若函數(shù)g(x)=f(x)-k有兩個不同的零點,則實數(shù)k的取值范圍是
3
4
,1)
3
4
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)一模)某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.
(Ⅰ)下表是年齡的頻數(shù)分布表,求正整數(shù)a,b的值;
區(qū)間 [25,30) [30,35) [35,40) [40,45) [45,50]
人數(shù) 50 50 a 150 b
(Ⅱ)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組的人數(shù)分別是多少?
(Ⅲ)在(Ⅱ)的前提下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)一模)復(fù)數(shù)
10i
1-2i
=( 。

查看答案和解析>>

同步練習(xí)冊答案