14.200輛汽車通過某一段公路時的時速的頻率分布直方圖如圖所示,則時速在[50,70)的汽車大約( 。
A.60輛B.80輛C.100輛D.120輛

分析 需根據(jù)直方圖中求出各個矩形的面積,即為各組頻率,再由總數(shù)乘以頻率即得各組頻數(shù).

解答 解:由直方圖可知,時速在[50,60)的頻率為0.02×10=0.2,
 時速在[60,70]的頻率為0.04×10=0.4  
所以時速在[50,70]的汽車大約有200×(0.2+0.4)=120輛.
故選:D

點評 本題考查頻率分布直方圖的相關知識.直方圖中的各個矩形的面積代表了頻率,所以各個矩形面積之和為1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知點P(1,-2),O(0,0),點M(x,y)滿足不等式組$\left\{\begin{array}{l}{x+y≤6}\\{y-2x≤3}\\{y≥0}\\{x≥0}\end{array}\right.$,則z=$\overrightarrow{OP}$$•\overrightarrow{PM}$的取值范圍為(  )
A.[-1,14]B.[-14,1]C.[-2,13]D.[-13,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列求導運算正確的是( 。
A.$(x+\frac{1}{x})'=1+\frac{1}{x^2}$B.$({log_2}x)'=\frac{1}{xln2}$C.(2x)'=2xlog2eD.(xcosx)'=-sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.某小賣部銷售某品牌的飲料的零售價與銷量間的關系統(tǒng)計如下:
單價x(元)3.03.23.43.63.84.0
銷量y(瓶)504443403528
已知x,y的關系符合回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=-20.若該品牌的飲料的進價為2元,為使利潤最大,零售價應定為3.75元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設直線l0過拋物線C:x2=2py(p>0)的焦點且與拋物線分別相交于A0,B0兩點,已知|A0B0|=6,直線l0的傾斜角θ滿足sinθ=$\frac{\sqrt{3}}{3}$.
(1)求拋物線C的方程;
(2)設N是直線l:y=x-4上的任一點,過N作C的兩條切線,切點分別為A,B,試證明直線AB過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若sinα<0,tanα>0,則α的終邊在(  )
A.第一象限B.、第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.7名旅客分別從3個不同的景區(qū)中選擇一處游覽,不同選法種數(shù)是( 。
A.73B.37C.$A_7^3$D.$C_7^3$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知非零向量$\overrightarrow m$,$\overrightarrow n$滿足3|$\overrightarrow m|=2|\overrightarrow n|$,<$\overrightarrow m,\overrightarrow n>={60°}$,若<$\overrightarrow m,\overrightarrow n>={60°}$,若$\overrightarrow n⊥(t\overrightarrow m+\overrightarrow n)$,則實數(shù)t的值為( 。
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.$f(x)=1o{g_{\frac{1}{2}}}(sinxcosx+{cos^2}x)$的單調(diào)遞減區(qū)間為[kπ-$\frac{π}{4}$,kπ+$\frac{π}{8}$](k∈Z).

查看答案和解析>>

同步練習冊答案