12.在等差數(shù)列{an}中,對(duì)任意正整數(shù)n,都有an+1+an=4n-58,則a2016=4002.

分析 利用等差數(shù)列的通項(xiàng)公式代入:an+1+an=4n-58,即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,
∵對(duì)任意正整數(shù)n,都有an+1+an=4n-58,
∴2an+d=4n-58,
∴an=2n-29-$\frac{1}{2}$d=(-27-$\frac{1}{2}$d)+2(n-1),與an=a1+(n-1)d比較,可得:
公差d=2,首項(xiàng)a1=-27-$\frac{1}{2}$d=-28.
∴a2016=-28+2(2016-1)=4002.
故答案為:4002.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的離心率為$\frac{3}{2}$,過(guò)其右焦點(diǎn)F(3,0),且垂直于x軸的直線與雙曲線交于點(diǎn)A、B,則|AB|=( 。
A.4B.5C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.偶函數(shù)f(x)定義在(-1,0)∪(0,1)上,且$f(\frac{1}{2})=0$,當(dāng)x>0時(shí),總有$(\frac{1}{x}-x)f'(x)•ln(1-{x^2})>2f(x)$,則不等式f(x)<0的解集為(  )
A.{x|-1<x<1且x≠0}B.$\left\{x\right.|-1<x<-\frac{1}{2}$或$\frac{1}{2}<x<\left.1\right\}$
C.$\left\{{x|-\frac{1}{2}}\right.<x<\frac{1}{2}$且x≠0}D.{x|-1<x<-$\frac{1}{2}$或$0<x<\left.{\frac{1}{2}}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列函數(shù)中,最小正周期為π且圖象關(guān)于y軸對(duì)稱(chēng)的函數(shù)是( 。
A.$y=cos(2x+\frac{π}{2})$B.y=|sinx|C.$y={sin^2}(x-\frac{π}{4})$D.y=sin2x+cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若存在實(shí)數(shù)x0和正實(shí)數(shù)△x,使得函數(shù)f(x)滿(mǎn)足f(x0+△x)=f(x0)+4△x,則稱(chēng)函數(shù)f(x)為“可翻倍函數(shù)”,則下列四個(gè)函數(shù)
①$f(x)=\sqrt{x}$;  ②f(x)=x2-2x,x∈[0,3];
③f(x)=4sinx; ④f(x)=ex-lnx.
其中為“可翻倍函數(shù)”的有①④(填出所有正確結(jié)論的番號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知cosA=$-\frac{1}{4}$.
(Ⅰ)求${sin^2}\frac{B+C}{2}+cos2A$的值;
(Ⅱ)若$a=\sqrt{3}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合A={x|x2-5x-6<0},B={x|-3<x<3},則A∩B=(  )
A.(-3,3)B.(-3,6)C.(-1,3)D.(-3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若(x2+ax+y)6(a>0)的展開(kāi)式中含x2的系數(shù)是66,則展開(kāi)式中x5y2的項(xiàng)的系數(shù)為( 。
A.240B.480C.-240D.-480

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.cos60°sin75°+sin60°sin165°的值是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案