分析 利用等差數(shù)列的通項(xiàng)公式代入:an+1+an=4n-58,即可得出.
解答 解:設(shè)等差數(shù)列{an}的公差為d,
∵對(duì)任意正整數(shù)n,都有an+1+an=4n-58,
∴2an+d=4n-58,
∴an=2n-29-$\frac{1}{2}$d=(-27-$\frac{1}{2}$d)+2(n-1),與an=a1+(n-1)d比較,可得:
公差d=2,首項(xiàng)a1=-27-$\frac{1}{2}$d=-28.
∴a2016=-28+2(2016-1)=4002.
故答案為:4002.
點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-1<x<1且x≠0} | B. | $\left\{x\right.|-1<x<-\frac{1}{2}$或$\frac{1}{2}<x<\left.1\right\}$ | ||
C. | $\left\{{x|-\frac{1}{2}}\right.<x<\frac{1}{2}$且x≠0} | D. | {x|-1<x<-$\frac{1}{2}$或$0<x<\left.{\frac{1}{2}}\right\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=cos(2x+\frac{π}{2})$ | B. | y=|sinx| | C. | $y={sin^2}(x-\frac{π}{4})$ | D. | y=sin2x+cos2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-3,3) | B. | (-3,6) | C. | (-1,3) | D. | (-3,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 240 | B. | 480 | C. | -240 | D. | -480 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com