【題目】已知函數(shù).

(1)判斷函數(shù)的奇偶性,并加以證明;

(2)用定義證明函數(shù)在區(qū)間上為增函數(shù);

(3)若函數(shù)在區(qū)間上的最大值與最小值之和不小于,求的取值范圍.

【答案】(1)奇函數(shù)(2)詳見解析(3)[4,+)

【解析】

試題分析:(1)判斷出函數(shù)是奇函數(shù)再證明,確定函數(shù)定義域且關(guān)于原點對稱,利用奇函數(shù)的定義可判斷;

(2)判斷函數(shù)f(x)在(0,+)上是增函數(shù),證明按照取值、作差、變形定號、下結(jié)論步驟即可;(3)根據(jù)(2)的結(jié)論得函數(shù)在區(qū)間[2,a]上的單調(diào)性,再求出最大值、最小值,根據(jù)條件列出不等式求出a得范圍

試題解析:1)函數(shù)是奇函數(shù), 1

函數(shù)的定義域為,在軸上關(guān)于原點對稱, 2

函數(shù)是奇函數(shù). 3

2)證明:設(shè)任意實數(shù),且, 4

, 5

,

<0 ,

<0,,

函數(shù)在區(qū)間上為增函數(shù). 8

3

函數(shù)在區(qū)間上也為增函數(shù). 9

, 10

若函數(shù)在區(qū)間上的最大值與最小值之和不小于,

, ,

的取值范圍是[4,+). 12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小型餐館一天中要購買兩種蔬菜,,蔬菜每公斤的單價分別為2元和3元.根據(jù)需要蔬菜至少要買6公斤,蔬菜至少要買4公斤,而且一天中購買這兩種蔬菜的總費用不能超過60元.如果這兩種蔬菜加工后全部賣出,,兩種蔬菜加工后每公斤的利潤分別為2元和1元,餐館如何采購這兩種蔬菜使得利潤最大,利潤最大為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)當(dāng)時,討論的單調(diào)性

(2)求在區(qū)間上的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐,,與△都是等邊三角形

(1)證明:平面;

(2)求二面角的平面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空間四邊形ABCD中,若AB=AD=AC=CB=CD=BD,則AC與BD所成角為 (  )

A. 30° B. 45° C. 60° D. 90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)fx對一切實數(shù)x,y均有fx+y-fyx+2y+1x成立,且f1=0

1求f0;

2求fx;

3當(dāng)0<x<2時不等式fx>ax-5恒成立,求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的頂點在原點,其焦點Fy軸上,又拋物線上的點P(k,-2)與點離

4,則k等于 (  )

A4 B4或-4 C.-2 D.-22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列說法:①函數(shù)y=-cos 2x的最小正周期是π;

②終邊在y軸上的角的集合是{α|α=,k∈Z};

③在同一直角坐標(biāo)系中,函數(shù)y=sin x的圖象和函數(shù)y=x的圖象有三個公共點;

④把函數(shù)y=3sin(2x+)的圖象向右平移個單位長度得到函數(shù)y=3sin 2x的圖象;

⑤函數(shù)y=sin(x-)在[0,π]上是減函數(shù).

其中,正確的說法是________.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 一個幾何體的三視圖如圖所示,已知正(主)視圖是底邊長為1的平行四邊形,側(cè)(左)視圖是一個長為,寬為1的矩形,俯視圖為兩個邊長為1的正方形拼成的矩形.

(1)求該幾何體的體積;

(2)求該幾何體的表面積

查看答案和解析>>

同步練習(xí)冊答案