若函數(shù)的導(dǎo)函數(shù)在區(qū)間上是增函數(shù),
則函數(shù)在區(qū)間上的圖象可能是 ( )
|
A . B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列和滿足,若為
等比數(shù)列,且.
(1) 求與;
(2) 設(shè),記數(shù)列的前項和為
()求;
()求正整數(shù),使得對任意,均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
解析 本題考查導(dǎo)數(shù)與函數(shù)的綜合運(yùn)用能力,涉及利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,第一問關(guān)鍵是通過分析導(dǎo)函數(shù),從而確定函數(shù)的單調(diào)性,第二問是利用導(dǎo)數(shù)及函數(shù)的最值,由恒成立條件得出不等式條件從而求出的范圍。
解析 (I)
由知,當(dāng)時,,故在區(qū)間是增函數(shù);
當(dāng)時,,故在區(qū)間是減函數(shù);
當(dāng)時,,故在區(qū)間是增函數(shù)。
綜上,當(dāng)時,在區(qū)間和是增函數(shù),在區(qū)間是減函數(shù)。
(II)由(I)知,當(dāng)時,在或處取得最小值。
由假設(shè)知
即 解得 1<a<6
故的取值范圍是(1,6)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)
(Ⅰ)當(dāng)曲線處的切線斜率
(Ⅱ)求函數(shù)的單調(diào)區(qū)間與極值;
(Ⅲ)已知函數(shù)有三個互不相同的零點(diǎn)0,,且。若對任意的
,恒成立,求m的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com