Processing math: 100%
18.已知向量a滿足|a|=1,||=6,且a•(a)=2,則\overrightarrow{a}•\overrightarrow的值為3,a\overrightarrow的夾角是π3

分析 由已知展開向量等式可得a的值;再由數(shù)量積公式求得a的夾角.

解答 解:由|a|=1,||=6,且a•(a)=2,
a|a|2=2,即a1=2,∴a=3
設(shè)a的夾角是θ,則cosθ=a|a|||=31×6=12,
θ=π3
故答案為:3;π3

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查由數(shù)量積求向量的夾角,是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a>0,b>0,若不等式m2a+b2a10恒成立,則m的最大值為( �。�
A.4B.16C.9D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)的定義域?yàn)镈,若存在閉區(qū)間[m,n]⊆D,使得函數(shù)f(x)滿足以下兩個(gè)條件:
(1)f(x)在[m,n]上是單調(diào)函數(shù);
(2)f(x)在[m,n]上的值域?yàn)閇2m,2n],則稱區(qū)間[m,n]為y=f(x)的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有①③④(填上所有正確的序號(hào))
①f(x)=x2(x≥0)
②f(x)=ex(x∈R)
fx=4xx2+1x0
fx=log22x18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將函數(shù)y=sin(x+π6)(x∈R)的圖象上所有的點(diǎn)向左平移π4個(gè)單位長度,所得圖象的函數(shù)解析式為( �。�
A.y=sin(x+π12B.y=sin(x-π12C.y=sin(x+5π12D.y=sin(x-5π12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)={x+12+1x02x1x0,若函數(shù)g(x)=f(x)-a有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.(0,1)B.[0,1)C.(0,1]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=cos(2x-π3)的最小正周期是(  )
A.π2B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若工人月工資(元)依勞動(dòng)產(chǎn)值(萬元)變化的回歸直線方程為y=60+90x,則下列說法正確的是③(填序號(hào)).
①勞動(dòng)產(chǎn)值為10000元時(shí),工資為50元;
②勞動(dòng)產(chǎn)值提高10000元時(shí),工資提高150元;
③勞動(dòng)產(chǎn)值提高10000元時(shí),工資提高90元;
④勞動(dòng)產(chǎn)值為10000元時(shí),工資為90元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在裝有相等數(shù)量的白球和黑球的口袋中放進(jìn)一個(gè)白球,此時(shí)由這個(gè)口袋中取出一個(gè)白球的概率比原來由此口袋中取出一個(gè)白球的概率大122,則口袋中原有小球的個(gè)數(shù)為( �。�
A.5B.6C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知x>0,則x+4x-1的最小值是( �。�
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案
闂佺ǹ楠忛幏锟� 闂傚倸鍋婇幏锟�