A. | $\frac{n(n+1)}{2}$ | B. | $\frac{2n}{n+1}$ | C. | $\frac{2}{n(n+1)}$ | D. | $\frac{n}{n+1}$ |
分析 根據(jù)點(diǎn)P(an,an+1)(n∈N*)在一次函數(shù)上y=x+2的圖象上,求出an的通項(xiàng)公式,然后再求出sn的表達(dá)式,進(jìn)而求得答案.
解答 解:∵點(diǎn)P(an,an+1)(n∈N*)在一次函數(shù)上y=x+2的圖象上,
∴an+1-an=2,
∴數(shù)列{an}是等差數(shù)列,
∵a1=2,
∴Sn=na1+$\frac{n(n-1)d}{2}$=2n+n(n-1)=n(n+1),
∴$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$=1-$\frac{1}{2}$+$\frac{1}{2}$$-\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
故選:D.
點(diǎn)評(píng) 本題主要考查數(shù)列求和的知識(shí)點(diǎn),解答本題的關(guān)鍵是證明數(shù)列{an}是等差數(shù)列,然后求出等差數(shù)列的前n項(xiàng)和,然后在用裂項(xiàng)求和,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2n(2n-1) | B. | -3n(n+3) | C. | -4n(2n+1) | D. | -6n(n+1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com