8.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\overrightarrow{BA}$•$\overrightarrow{BC}$,sinA=$\frac{3}{5}$.
(1)求sinC的值;
(2)設(shè)D為AC的中點(diǎn),若△ABC的面積為6,求BD的長.

分析 (1)由已知及向量的運(yùn)算可求|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,進(jìn)而可得A=B,A與B都是銳角,利用同角三角函數(shù)基本關(guān)系式可求cosA,利用二倍角公式即可得解sinC的值.
(2)由(1)及三角形面積公式可求a=b=$\frac{5\sqrt{2}}{2}$,由二倍角公式求得cosC的值,利用余弦定理可求BD的值.

解答 解:(1)$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\overrightarrow{BA}$•$\overrightarrow{BC}$,得$\overrightarrow{AB}•(\overrightarrow{AC}+\overrightarrow{BC})$=0,
即($\overrightarrow{AC}-\overrightarrow{BC}$)•($\overrightarrow{AC}+\overrightarrow{BC}$)=|$\overrightarrow{AC}$|2-|$\overrightarrow{BC}$|2=0,
故|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,(也可以由向量數(shù)量積的幾何意義得出|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|)
從而A=B,A與B都是銳角
則cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{4}{5}$.
sinC=sin(A+B)=sin2A=2sinAcosA=$\frac{24}{25}$,即sinC=$\frac{24}{25}$.
(2)由題意知,S△ABC=$\frac{1}{2}$absinC=$\frac{12{a}^{2}}{25}$=6,得a=b=$\frac{5\sqrt{2}}{2}$,
如右圖,CD=$\frac{5\sqrt{2}}{4}$,BC=$\frac{5\sqrt{2}}{2}$,
又cosC=cos(π-2A)=-cos2A=-(1-2sin2A)=-$\frac{7}{25}$,
在△BCD中,由余弦定理得:
BD2=CD2+BC2-2CD•BCcosC=$\frac{25}{8}$+$\frac{25}{2}$-2×$\frac{5\sqrt{2}}{4}$×$\frac{5\sqrt{2}}{2}$×(-$\frac{7}{25}$)=$\frac{153}{8}$.
故BD=$\frac{3\sqrt{34}}{4}$.

點(diǎn)評(píng) 本題主要考查了向量的運(yùn)算,同角三角函數(shù)基本關(guān)系式,二倍角公式,三角形面積公式,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.表示正整數(shù)集的是( 。
A.QB.NC.N*D.Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知$\sqrt{a}$+$\frac{1}{\sqrt{a}}$=3,求$\frac{({a}^{2}+\frac{1}{{a}^{2}}+3)}{\root{4}{a}+\frac{1}{\root{4}{a}}}$的值;
(2)計(jì)算[(1-log63)2+log62×log618]•log46.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線C:y2=4$\sqrt{2}$x的焦點(diǎn),P為C上一點(diǎn),若|PF|=3$\sqrt{2}$,則△POF的面積(  )
A.2B.2$\sqrt{2}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知i是虛數(shù)單位,復(fù)數(shù)z=$\frac{1}{a-i}$(a∈R)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于直線x+2y=0上,則a=( 。
A.2B.$\frac{1}{2}$C.-2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列所給點(diǎn)中,在方程x2-xy+2y+1=0表示的曲線上的是( 。
A.(0,0)B.(1,-1)C.$(0,-\frac{1}{2})$D.(1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)a<1,集合A={x∈R|x>0},B={x∈R|2x2-3(1+a)x+6a>0},D=A∩B.
(Ⅰ)求集合D(用區(qū)間表示);
(Ⅱ)求函數(shù)f(x)=x2-(1+a)x+a在D內(nèi)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}中,a1=3,a2=5,{an}的前n項(xiàng)和Sn,且滿足Sn+Sn-2=2Sn-1+2n-1(n≥3).
(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=$\frac{{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$,Tn是數(shù)列{bn}的前n項(xiàng)和,證明:Tn<$\frac{1}{6}$;
(3)證明:對(duì)任意給定的m∈(0,$\frac{1}{6}$),均存在n0∈N+,使得當(dāng)n≥n0時(shí),(2)中的Tn>m恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.圓(x-3)2+(y+4)2=2關(guān)于直線y=0對(duì)稱的圓的方程是( 。
A.(x+3)2+(y-4)2=2B.(x-4)2+(y+3)2=2C.(x+4)2+(y-3)2=2D.(x-3)2+(y-4)2=2

查看答案和解析>>

同步練習(xí)冊答案