3.已知i是虛數(shù)單位,復(fù)數(shù)z=$\frac{1}{a-i}$(a∈R)在復(fù)平面內(nèi)對應(yīng)的點位于直線x+2y=0上,則a=( 。
A.2B.$\frac{1}{2}$C.-2D.$-\frac{1}{2}$

分析 利用復(fù)數(shù)的運算法則、幾何意義即可得出.

解答 解:∵復(fù)數(shù)z=$\frac{1}{a-i}$=$\frac{a+i}{(a-i)(a+i)}$=$\frac{a}{{a}^{2}+1}$+$\frac{1}{{a}^{2}+1}$i在復(fù)平面內(nèi)對應(yīng)的點($\frac{a}{{a}^{2}+1}$,$\frac{1}{{a}^{2}+1}$)在位于直線x+2y=0上,
∴$\frac{a}{{a}^{2}+1}$+2×$\frac{1}{{a}^{2}+1}$=0,解得a=-2.
故選:C.

點評 本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.如圖所示的三幅圖中,圖(1)所示的是一個長方體截去一個角所得多面體的直觀圖,它的正視圖和側(cè)視圖如圖(2)(3)所示(單位:cm).
(1)按照畫三視圖的要求將右側(cè)三視圖補充完整.
(2)按照給出的尺寸,求該多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.f(x)=$\left\{\begin{array}{l}{lo{g}_{2}({2}^{x}-8),x>3}\\{f(x+2),x≤3}\end{array}\right.$ 則f(0)=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.圓心坐標為(4,0)且經(jīng)過點(0,3)的圓的方程是( 。
A.x2+(y-4)2=25B.(x-4)2+y2=25C.x2+(y-4)2=25D.(x+4)2+y2=25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為($\sqrt{3}$,0).
(1)求雙曲線C的方程;
(2)若直線l:y=x+2與雙曲線交于A,B兩點,求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\overrightarrow{BA}$•$\overrightarrow{BC}$,sinA=$\frac{3}{5}$.
(1)求sinC的值;
(2)設(shè)D為AC的中點,若△ABC的面積為6,求BD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.命題“數(shù)列{an}前n項和是Sn=An2+Bn+C的形式,則數(shù)列{an}為等差數(shù)列”的逆命題,否命題,逆否命題這三個命題中,真命題的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知F1(-3,0),F(xiàn)2(3,0)是橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1的兩個焦點,點P在橢圓上,∠F1PF2=α.當α=$\frac{2π}{3}$時,△F1PF2面積最大,則m+n的值是(  )
A.41B.15C.9D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知i為虛數(shù)單位,a為實數(shù),復(fù)數(shù)z=(a-2i)i在復(fù)平面內(nèi)對應(yīng)的點為M,則“a<-2”是“點M在第四象限”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案