【題目】已知函數(shù)).

1當(dāng)時,求函數(shù)的零點;

2的單調(diào)區(qū)間;

3當(dāng)時,若恒成立,求的取值范圍

【答案】1兩個零點,;

2當(dāng)時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,當(dāng)時,的單調(diào)遞增區(qū)間為單調(diào)遞減區(qū)間為,當(dāng)時,的單調(diào)遞減區(qū)間為,沒有單調(diào)遞增區(qū)間,當(dāng)時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;

3

【解析】

試題分析:1,即,即,將代入可求得兩根為,;2,對分成,,四類來討論函數(shù)的單調(diào)區(qū)間;3當(dāng)時,當(dāng)時,,當(dāng)時,由2可知函數(shù)在時取得最小值,故,解得

試題解析:

1,即,,

,,

方程有兩個不等實根:

當(dāng)時,函數(shù)有且只有兩個零點

2

,解得

當(dāng)時,列表得:

單調(diào)遞增

極大值

單調(diào)遞減

極小值

單調(diào)遞增

當(dāng)時,

,則,列表得:

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

易知的單調(diào)減區(qū)間為;

,列表得:

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

綜上,當(dāng)時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

當(dāng)時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;

當(dāng)時,的單調(diào)遞減區(qū)間為,沒有單調(diào)遞增區(qū)間

當(dāng)時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

3 當(dāng)時,有,,,,從而

當(dāng)時,由2可知函數(shù)在時取得最小值

為函數(shù)上的最小值

解得

的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查方式中合適的是(

A.要了解一批節(jié)能燈的使用壽命,采用普查方式

B.調(diào)查你所在班級同學(xué)的身高,采用抽樣調(diào)查方式

C.調(diào)查沱江某段水域的水質(zhì)情況,采用抽樣調(diào)查方式

D.調(diào)查全市中學(xué)生每天的就寢時間,采用普查方式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的頂點到左焦點的距離為,離心率.

(1)求橢圓的方程;

(2)若點橢圓的右頂點,過點作互相垂直的兩條射線,與橢分別交于不同的兩點不與左、右頂點重合) ,試判斷直線是否過定點,若過定點,求出該定點的坐標(biāo)若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市四所中學(xué)報名參加某高校今年自主招生的學(xué)生人數(shù)如下表所示:

中學(xué)

人數(shù)

為了了解參加考試的學(xué)生的學(xué)習(xí)狀況,該高校采用分層抽樣的方法從報名參加考試的四所中學(xué)的學(xué)生當(dāng)中隨機抽取50名參加問卷調(diào)查.

1)問四所中學(xué)各抽取多少名學(xué)生?

2)在參加問卷調(diào)查的名學(xué)生中,從來自兩所中學(xué)的學(xué)生當(dāng)中隨機抽取兩名學(xué)生,用表示抽得中學(xué)的學(xué)生人數(shù),求的分布列,數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加某次知識競賽的同學(xué)中,選取60名同學(xué)將其成績(百分制)(均為整數(shù))分成6組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題.

1)求分?jǐn)?shù)在[7080)內(nèi)的頻率,并補全這個頻率分布直方圖;

2)從頻率分布直方圖中,估計本次考試的平均分;

3)若從60名學(xué)生中隨機抽取2人,抽到的學(xué)生成績在[40,70)記0分,在[70,100]1分,用X表示抽取結(jié)束后的總記分,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線在點處的切線斜率為0.

(1)討論函數(shù)的單調(diào)性;

(2)在區(qū)間上沒有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查甲、乙兩校高三年級學(xué)生某次聯(lián)考數(shù)學(xué)成績情況,用簡單隨機抽樣,從這兩校中各抽取30名高三年級學(xué)生,以他們的數(shù)學(xué)成績百分制作為樣本,樣本數(shù)據(jù)的莖葉圖如圖.

1若甲校高三年級每位學(xué)生被抽取的概率為0.05,求甲校高三年級學(xué)生總?cè)藬?shù),并估計甲校高三年級這次聯(lián)考數(shù)學(xué)成績的及格率60分及60分以上為及格;

2設(shè)甲、乙兩校高三年級學(xué)生這次聯(lián)考數(shù)學(xué)平均成績分別為12,估計12的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是

A.若兩條直線和同一個平面所成的角相等,則這兩條直線平行

B.若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行

C. 若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行

D.若兩個平面都垂直于第三個平面,則這個兩個平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一人連續(xù)投擲硬幣兩次,事件至少有一次為正面的互斥事件是( )

A.至多有一次為正面B.兩次均為正面

C.只有一次為正面D.兩次均為反面

查看答案和解析>>

同步練習(xí)冊答案