【題目】已知直線: 與軸的交點(diǎn)是橢圓: 的一個(gè)焦點(diǎn).
(1)求橢圓的方程;
(2)若直線與橢圓交于、兩點(diǎn),是否存在使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,請說明理由.
【答案】(1)(2)
【解析】【試題分析】(1)依據(jù)題設(shè)條件先焦半距即可獲解;(2)借助題設(shè)及直線與橢圓的位置關(guān)系,運(yùn)用向量的數(shù)量積公式建立方程分析求解:
(Ⅰ)因?yàn)橹本: 與軸的交點(diǎn)坐標(biāo)為
所以橢圓: 的一個(gè)焦點(diǎn)坐標(biāo)為,
所以橢圓的焦半距,所以,
故所求的方程為.
(Ⅱ) 將直線的方程代入并整理得.
設(shè)點(diǎn),則.
假設(shè)以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn),則,即.
又,于是, 解得,
經(jīng)檢驗(yàn)知:此時(shí)(*)式,適合題意.
故存在,使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 為實(shí)常數(shù).
(Ⅰ)設(shè),當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),直線、與函數(shù)、的圖象一共有四個(gè)不同的交點(diǎn),且以此四點(diǎn)為頂點(diǎn)的四邊形恰為平行四邊形.
求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
(1)若采用樣本估計(jì)總體的方式,試估計(jì)小王的所有微信好友中每日走路步數(shù)超過5000步的概率;
(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為 ,且圖象上一個(gè)最低點(diǎn)為 .
(1)求f(x)的解析式;
(2)當(dāng) ,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
(1)當(dāng)a為何值時(shí),直線l與圓C相切;
(2)當(dāng)直線l與圓C相交于A、B兩點(diǎn),且AB=2 時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人玩猜數(shù)字游戲,先由甲心中任想一個(gè)數(shù)字記為,再由乙猜甲剛才想的數(shù)字,把乙猜的數(shù)字記為,且、.若,則稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個(gè)游戲,則二人“心有靈犀”的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的公差d>0,設(shè){an}的前n項(xiàng)和為Sn , a1=1,S2S3=36.
(1)求d及Sn;
(2)求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com