已知一正方體的內(nèi)切球體積為
3
,則該正方體的表面積為
 
考點(diǎn):球的體積和表面積,棱柱、棱錐、棱臺(tái)的側(cè)面積和表面積
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:正方體的內(nèi)切球的直徑與正方體的邊長(zhǎng)相等.
解答: 解:∵正方體的內(nèi)切球體積為
3
,
∴內(nèi)切球的半徑為1,正方體的邊長(zhǎng)為2.
故該正方體的表面積為:22×6=4×6=24.
故答案為24.
點(diǎn)評(píng):本題考查了學(xué)生的空間想象力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β∈(
3
4
π,π),sin(α+β)=-
3
5

(Ⅰ)求sin2(α+β)的值;
(Ⅱ)若sin(β-
π
4
)=
3
10
10
,(i)求cos(α+
π
4
)的值(ii)求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知可由數(shù)列{an}構(gòu)造一列向量:
βn
=(2an,an+1-2n+1),n∈Z+.又向量
m
=(1,3),
p
=(3a1,7-a2),且向量
m
p
垂直,以及向量
m
βn
平行(n∈Z+).
(1)試確定a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)扇形的周長(zhǎng)是6cm,該扇形的中心角是1弧度,求該扇形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(
π
4
-α)=-
4
5
,sin(
4
+β)=
5
13
,且α∈(
π
4
,
4
),β∈(0,
π
4
),求sin(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={1,2,3},集合B={-1,0,1},若映射f:A→B滿足1+2=3,則不同的映射有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,PB⊥BC,PD⊥CD,E是側(cè)棱PD的中點(diǎn).
(1)求證:PB∥平面ACE;
(2)求證:PA⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),且在(0,+∞)上為增函數(shù),若函數(shù)過(guò)點(diǎn)(-2,0),解不等式xf(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=msinx+ncosx(x∈R,mn≠0),給出下列命題:
①存在m,n,使f(x)是偶函數(shù);
②對(duì)任意m,n,函數(shù)f(x)圖象過(guò)坐標(biāo)原點(diǎn);
③函數(shù)f(x)任意兩零點(diǎn)之間的距離為nπ(n∈N*);
④任意x∈R,|f(x)|≥f(
4
),則m≤n;
⑤若tanα=
m
n
,則f(α)=±
m2+n2

其中正確的是
 
(寫(xiě)出所有正確命題的編號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案