分析 (1)利用等差數列的通項公式即可得出;
(2)利用等比數列的通項公式及其定義即可得出;
(3)$(2{a}_{n}-5)^{2}$=(2n-1)2,n≥2時,$\frac{1}{(2{a}_{n}-5)^{2}}$=$\frac{1}{(2n-1)^{2}}$<$\frac{1}{(2n-3)(2n-1)}$=$\frac{1}{2}(\frac{1}{2n-3}-\frac{1}{2n-1})$.利用“累加求和”與數列的單調性即可得出.
解答 (1)解:設等差數列{an}的公差為d,∵a1=3,a1+a2+a3=12,∴3×3+3d=12,解得d=1.
∴an=3+(n-1)=n+2.
(2)證明:bn=3${\;}^{{a}_{n}}$=3n+2=27×3n-1,
∴數列{bn}是等比數列,首項為27,公比為3.
(3)證明:∵$(2{a}_{n}-5)^{2}$=(2n-1)2,
∴n≥2時,$\frac{1}{(2{a}_{n}-5)^{2}}$=$\frac{1}{(2n-1)^{2}}$<$\frac{1}{(2n-3)(2n-1)}$=$\frac{1}{2}(\frac{1}{2n-3}-\frac{1}{2n-1})$.
∴$\frac{1}{(2{a}_{1}-5)^{2}}$+$\frac{1}{(2{a}_{2}-5)^{2}}$+…+$\frac{1}{(2{a}_{n}-5)^{2}}$=1+$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-3}-\frac{1}{2n-1})]$=1+$\frac{1}{2}(1-\frac{1}{2n-1})$<$\frac{3}{2}$.
∴$\frac{1}{(2{a}_{1}-5)^{2}}$+$\frac{1}{(2{a}_{2}-5)^{2}}$+…+$\frac{1}{(2{a}_{n}-5)^{2}}$<$\frac{3}{2}$.
點評 本題考查了等差數列與等比數列的通項公式、“累加求和”方法、“放縮法”、數列的單調性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y平均增加3.5個單位 | B. | y平均增加2個單位 | ||
C. | y平均減少3.5個單位 | D. | y平均減少2個單位 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com