年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高州市高三11月月考數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)
如圖,已知是棱長為的正方體,點(diǎn)在上,點(diǎn)在上,且.
(1)求證:四點(diǎn)共面;(4分)
(2)若點(diǎn)在上,,點(diǎn)在上,,垂足為,求證:平面;(4分)
(3)用表示截面和側(cè)面所成的銳二面角的大小,求.(4分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年江蘇省高二第二學(xué)期期末考試數(shù)學(xué)(理)試題 題型:解答題
(本題滿分16分)已知在棱長為的正方體中,為棱的中點(diǎn),為正方形的中心,點(diǎn)分別在直線和上.
(1)若分別為棱,的中點(diǎn),求直線與所成角的余弦值;
(2)若直線與直線垂直相交,求此時(shí)線段的長;
(3)在(2)的條件下,求直線與所確定的平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)已知在棱長為的正方體中,為棱的中點(diǎn),為正方形的中心,點(diǎn)分別在直線和上.
(1)若分別為棱,的中點(diǎn),求直線與所成角的余弦值;
(2)若直線與直線垂直相交,求此時(shí)線段的長;
(3)在(2)的條件下,求直線與所確定的平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)已知在棱長為的正方體中,為棱的中點(diǎn),為正方形的中心,點(diǎn)分別在直線和上.
(1)若分別為棱,的中點(diǎn),求直線與所成角的余弦值;
(2)若直線與直線垂直相交,求此時(shí)線段的長;
(3)在(2)的條件下,求直線與所確定的平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com