分析 由題意可得出函數(shù)是周期為2的偶函數(shù)且x∈(-1,1)時,f(x)=2|x|-1,方程f(x)-loga(x+1)=0的實數(shù)根的個數(shù)即兩函數(shù)y=f(x)與y=loga(x+1)的圖象的交點個數(shù),利用f(1)=f(3)=1,關于x的方程f(x)-loga(x+1)=0恰有3個不同的實數(shù)根,可得loga(1+1)<1且loga(3+1)>1,即可得出答案.
解答 解:f(x)是定義在R上的偶函數(shù),當x∈[-1,0]時,f(x)=($\frac{1}{2}$)x-1,
∴x∈[-1,1]時,f(x)=2|x|-1,
又對任意的x∈R,都有f(x-1)=f(x+1),則f(x)=f(x+2),故周期是2,
方程f(x)-loga(x+1)=0的實數(shù)根的個數(shù)即兩函數(shù)y=f(x)與y=loga(x+1)的圖象的交點個數(shù),
由f(1)=f(3)=1,關于x的方程f(x)-loga(x+1)=0恰有3個不同的實數(shù)根,
可得loga(1+1)<1且loga(3+1)>1,
∴2<a<4.
故答案為:(2,4).
點評 本題考查了根的存在性及根的個數(shù)判斷,函數(shù)的周期性與偶函數(shù)的性質,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 底面半徑為1,且體積為$\frac{4π}{3}$的圓錐 | B. | 底面積為1,高為$\sqrt{14}$的正四棱柱 | ||
C. | 棱長為3的正四面體 | D. | 棱長為3的正方體 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=$\frac{1}{{x}^{2}}$ | B. | f(x)=x2+1 | C. | f(x)=x | D. | f(x)=2x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com