2.設(shè)公比為q的等比數(shù)列{an}的前n項(xiàng)和為Sn,若Sn+1、Sn、Sn+2成等差數(shù)列,則q=-2.

分析 通過記等比數(shù)列{an}的通項(xiàng)為an,利用Sn-Sn+1=Sn+2-Sn即-an•q=an•q+an•q2,計(jì)算即得結(jié)論.

解答 解:記等比數(shù)列{an}的通項(xiàng)為an,
則an+1=an•q,an+2=an•q2,
又∵Sn+1、Sn、Sn+2成等差數(shù)列,
∴Sn-Sn+1=Sn+2-Sn,
即-an•q=an•q+an•q2,
∴q2+2q=0,
∴q=-2,
故答案為:-2.

點(diǎn)評(píng) 本題考查等差數(shù)列、等比數(shù)列的性質(zhì),注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)函數(shù)f(x)=arcsin(cos(x)),則f(f(f(x)))的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.下面有五個(gè)命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π;
②終邊在y軸上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
③函數(shù)f(x)=|sin(x+$\frac{π}{3}$)|(x∈R),在區(qū)間[$\frac{2π}{3}$,$\frac{7π}{6}$]上是增函數(shù);
④若動(dòng)直線x=a與函數(shù)f(x)=sinx和g(x)=cosx的圖象分別交于M,N兩點(diǎn),則|MN|的最大值為1.
其中真命題的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,令${T_n}=\frac{{{S_1}+{S_2}+…+{S_n}}}{n}$,稱Tn為數(shù)列a1,a2,…,an的“理想數(shù)”,已知數(shù)列a1,a2,…,a502的“理想數(shù)”為2012,那么數(shù)列5,a1,a2,…,a502的“理想數(shù)”為 ( 。
A.2008B.2014C.2012D.2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.對(duì)于n∈N*,n≥2,求證:1+$\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{n^2}<2-\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.i10=( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.點(diǎn)O在△ABC內(nèi)部且滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow 0$,則△ABC的面積與△BOC的面積之比是( 。
A.$\frac{3}{2}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:百萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):
x24568
y3040605070
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)預(yù)測(cè)當(dāng)廣告費(fèi)支出為9百萬(wàn)元時(shí)的銷售額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.sin33°•sin63°+cos63°•sin57°的值等于( 。
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案