已知z1,z2∈C,設(shè)A:z12+z22=0,B:z1,z2全為零,則A是B的( 。
A、充分條件
B、必要條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專(zhuān)題:簡(jiǎn)易邏輯
分析:令Z1=1,Z2=i,我們可以判斷出“Z12+Z22=0⇒Z1=0且Z2=0”的真假,進(jìn)而再判斷出“Z1=0且Z2=0⇒Z12+Z22=0”的真假,結(jié)合必要條件、充分條件與充要條件的判斷方法,即可得到答案.
解答: 解:令Z1=1,Z2=i,則Z12+Z22=0成立,而Z1=0且Z2=0不成立,
即Z12+Z22=0⇒Z1=0且Z2=0為假命題;
而當(dāng)Z1=0且Z2=0時(shí),Z12+Z22=0成立,
即Z1=0且Z2=0⇒Z12+Z22=0為真命題;
故Z12+Z22=0是Z1=0且Z2=0的必要非充分條件,
故選B
點(diǎn)評(píng):判斷充要條件的方法是:
①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;
②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;
③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;
④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰(shuí)大誰(shuí)必要,誰(shuí)小誰(shuí)充分”的原則,判斷命題p與命題q的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+8=2},C={x|x2+2x-8=0},若∅?(A∩B),且A∩C=∅,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=sin(2x-
π
3
)-sin2x的一個(gè)單調(diào)遞增區(qū)間是( 。
A、[-
π
6
,
π
3
]
B、[
π
12
,
7
12
π]
C、[
5
12
π,
13
12
π]
D、[
π
3
,
6
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“B=60°”是“△ABC三個(gè)內(nèi)角成等差數(shù)列”的(  )
A、充分非必要條件
B、充要條件
C、必要非充分條件
D、既不充分又非必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四棱錐S-ABCD中,底面ABCD為直角梯形,AB垂直于AD和BC,SA⊥面ABCD,SA=AB=BC=2,AD=1.求:
(1)VS-ABCD;
(2)SC上是否存在點(diǎn)E,使DE⊥SB?若存在,確定點(diǎn)E的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間三點(diǎn)A(0,2,3)B(-2,1,6)C(1,-1,5)
(1)求以AB,AC為邊的平行四行形面積.
(2)已知
a
AB
=0,
a
AC
=0且|
a
|=
3
,求
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB⊥平面BCD,BC⊥CD,則圖中直角三角形的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1的一條準(zhǔn)線與兩條漸近線交于A、B兩點(diǎn),相應(yīng)的焦點(diǎn)為F,若以AB為直徑的圓恰好過(guò)F點(diǎn),則離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直角三角形的周長(zhǎng)為定值2l,則它的面積的最大值為(  )
A、2
2
l2
B、3
2
l2
C、(3+2
2
)l2
D、(3-2
2
)l2

查看答案和解析>>

同步練習(xí)冊(cè)答案