13.有如下命題:
①“a>b>0”是“$\frac{1}{a}$<$\frac{1}$”成立的充分不必要條件;
②a>b>0,t>0,則$\frac{a}$<$\frac{a+t}{b+t}$;
③a5+b5≥a2b3+a3b2對(duì)一切正實(shí)數(shù)a,b均成立;
④“$\frac{a}$>1”是“a-b>0”成立的必要非充分條件.
其中正確的命題為①③(填寫(xiě)正確命題的序號(hào))

分析 ①④主要是當(dāng)a,b異號(hào)時(shí)的情況;
②③可用做差比較法判定,得出結(jié)論;

解答 解:①“a>b>0”能推出“$\frac{1}{a}$<$\frac{1}$”,但反之不一定,比如a<0時(shí)不成立,故是充分不必要條件,故正確;
②a>b>0,t>0,則$\frac{a}$-$\frac{a+t}{b+t}$=$\frac{t(a-b)}{b(b+t)}$>0,故$\frac{a}$>$\frac{a+t}{b+t}$,故錯(cuò)誤;
③a5+b5-a2b3+a3b2=(a-b)2(a+b)(a2+ab+b2),顯然對(duì)一切正實(shí)數(shù)a,b均成立,故正確;
④“$\frac{a}$>1”推不出“a-b>0”,反之也不能,應(yīng)是即不充分也不必要條件,故錯(cuò)誤.
故答案為①③.

點(diǎn)評(píng) 考查了命題間的關(guān)系和做差法的應(yīng)用,屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.sin45°sin105°+sin45°sin15°=(  )
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖所示,執(zhí)行程序框圖輸出的結(jié)果是( 。
A.$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{11}$B.$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{22}$C.$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{10}$D.$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.$\frac{tan105°-1}{tan105°+1}$的值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x},(x>2)\\ f(x+1),(x≤2)\end{array}$,則f(1)=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知M(3,-2),N(-5,-1),且P是MN的中點(diǎn),則P點(diǎn)的坐標(biāo)為$(-1,-\frac{3}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且acosC+$\sqrt{3}$asinC=b+c,則角A的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知邊長(zhǎng)為2的正方形ABCD所在的平面與△CDE所在平面交于CD,且AE⊥平面CDE,AE=1.
(Ⅰ)求證:平面ABCD⊥平面ADE;
(Ⅱ)設(shè)點(diǎn)F為棱BC上一點(diǎn),當(dāng)點(diǎn)F滿足CF=2FB時(shí),求直線AD與面AEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知sin(α+$\frac{π}{2}$)=-$\frac{\sqrt{5}}{5}$,α∈(0,π).
(1)求$\frac{sin(α-\frac{π}{2})-cos(\frac{3π}{2}+α)}{sin(π-α)+cos(3π+α)}$的值;
(2)求cos(2α-$\frac{3π}{4}$)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案