7.函數(shù)y=(2x-1)ex的圖象是( 。
A.B.C.D.

分析 先通過函數(shù)的零點(diǎn)排除C,D,再根據(jù)x的變化趨勢和y的關(guān)系排除B,問題得以解決.

解答 解:令y=(2x-1)ex=0,解得x=$\frac{1}{2}$,函數(shù)有唯一的零點(diǎn),故排除C,D,
當(dāng)x→-∞時(shí),ex→0,所以y→0,故排除B,
故選:A.

點(diǎn)評 本小題主要考查函數(shù)的性質(zhì)對函數(shù)圖象的影響,并通過對函數(shù)的性質(zhì)來判斷函數(shù)的圖象等問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,下頂點(diǎn)和上頂點(diǎn)分別為B1,B2,以B1為圓心,B1B2為半徑的圓恰好經(jīng)過點(diǎn)F且與直線3x-4y+6=0相切,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知x,y滿足$\left\{\begin{array}{l}x-y≥0\\ x+y≤4\\ y≥1\end{array}$,且z=$\frac{1}{2}$x+y的最大值是M,最小值是m,若 Ma+mb=3(a,b均為正實(shí)數(shù)),則$\frac{2}{a}$+$\frac{1}$的最小值為(  )
A.4B.$\frac{9}{2}$C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.將函數(shù)y=sin(2x-ϕ)(0<ϕ<π)的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位后得到的圖象關(guān)于原點(diǎn)對稱,則ϕ的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S1=2,Sn+1=3Sn+2(n=1,2,3…).
(Ⅰ)求證:數(shù)列{Sn+1}為等比數(shù)列;
(Ⅱ)求通項(xiàng)公式an;
(Ⅲ)若數(shù)列$\left\{{\frac{b_n}{a_n}}\right\}$是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{x≥1\;\;\;\;\;\;}\\{y≥x-1\;}\\{x+y≤3\;}\end{array}}\right.$,則動(dòng)點(diǎn)P(x,y)所形成區(qū)域的面積為1,z=x2+y2的取值范圍是[1,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一個(gè)交點(diǎn)與拋物線y2=8x的焦點(diǎn)重合,且雙曲線的離心率等于$\sqrt{2}$,則該雙曲線的方程為( 。
A.x2-y2=4B.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1D.x2-y2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=x2-2x+4,數(shù)列{an}是公差為d的等差數(shù)列,若a1=f(d-1),a3=f(d+1),則{an}的通項(xiàng)公式為( 。
A.2n-2B.2n+1C.2n+3D.n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在直角坐標(biāo)系xOy中,一次函數(shù)y=-$\frac{2}{3}$x+m(m為常數(shù))的圖象與x軸交于A(-3,0),與y軸交于點(diǎn)C.以直線x=-1為對稱軸的拋物線y=ax2+bx+c(a,b,c為常數(shù),且a>0)經(jīng)過A、C兩點(diǎn),與x軸正半軸交于點(diǎn)B.
(1)求一次函數(shù)及拋物線的函數(shù)表達(dá)式.
(2)已知在對稱軸上是否存在一點(diǎn)P,使得△PBC的周長最小,若存在,請求出點(diǎn)P的坐標(biāo).
(3)點(diǎn)D是線段OC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、點(diǎn)C重合),過點(diǎn)D作DE‖PC交x軸于點(diǎn)E,連接PD、PE.設(shè)CD的長為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.并說明S是否存在最大值,若存在,請求出最大值:若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案