12.函數(shù)f(x)=x2+bx的圖象在點A(2,f(2))處的切線與直線x+6y+1=0垂直,若數(shù)列|$\frac{1}{f(n)}$|的前n項和為Sn,則滿足Sn>$\frac{5}{12}$的最小正整數(shù)的是( 。
A.1B.2C.3D.4

分析 由已知列式求得b值,得到函數(shù)解析式,然后利用裂項相消法求出數(shù)列|$\frac{1}{f(n)}$|的前n項和為Sn,再由Sn>$\frac{5}{12}$變形整理得到滿足Sn>$\frac{5}{12}$的最小正整數(shù).

解答 解:f(x)=x2+bx,得f′(x)=2x+b,
則k=f′(2)=2×2+b=4+b=6,得b=2.
則f(x)=x2+2x,∴f(n)=n2+bn,
${a}_{n}=|\frac{1}{f(n)}|=\frac{1}{{n}^{2}+2n}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
∴Sn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})+…+(\frac{1}{n-1}-\frac{1}{n+1})+(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{3}{4}-\frac{2n+3}{2{n}^{2}+6n+4}$>$\frac{5}{12}$,
化簡得:2n2-5>0.
滿足這個不等式的最小正整數(shù)為2.
故選:B.

點評 本題考查利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,考查了裂項相消法求數(shù)列的和,考查數(shù)列不等式的解法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.用二分法求方程x2-5=0在區(qū)間(2,3)內(nèi)的近似解,經(jīng)過7次二分后精確度能達到0.01.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線y=kx與函數(shù)f(x)=$\frac{{|{{x^2}-1}|}}{x-1}$圖象有兩個交點,則k的范圍是( 。
A.$({0,\sqrt{3}})$B.$({0,1})∪({1,\sqrt{3}})$C.$({1,\sqrt{3}})$D.(0,1)∪(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.二次函數(shù)f(x)=-x2+6x在區(qū)間[0,4]上的最大值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$f(x)={(\frac{1}{2})^x}-{log_2}x$,實數(shù)a,b,c滿足f(a)•f(b)•f(c)<0,且0<a<b<c,若實數(shù)x0是函數(shù)f(x)的一個零點,那么下列不等式中,不可能成立的是(  )
A.x0<aB.x0>bC.x0<cD.x0>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖1,矩形ABCD中,AB=12,AD=6,E,F(xiàn)分別為CD,AB邊上的點,且DE=3,BF=4,將△BCE沿BE折起至△PBE位置(如圖2所示),連接AP、EF、PF,其中PF=2$\sqrt{5}$.
(1)求證:平面PEF⊥平面ABED;
(2)求點F到平面PBE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lgx的定義域為集合A,函數(shù)$g(x)=\sqrt{4-x}$的定義域為集合B,集合C=(-∞,a].
(Ⅰ)求A∩B;
(Ⅱ)若A∩C=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖(其中[x]表示不超過實數(shù)x的最大整數(shù)),則運行后輸出的結(jié)果是(  )
A.31B.32C.35D.37

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=4x2-kx-8在[5,8]上不是單調(diào)函數(shù),則k的取值范圍是( 。
A.(40,64)B.[40,64]C.(-∞,40)∪(64,+∞)D.(-∞,40]∪[64,+∞)

查看答案和解析>>

同步練習(xí)冊答案