A. | [4,6] | B. | [5,6] | C. | [4,5] | D. | [3,6] |
分析 根據(jù)題意,得出圓C的圓心C與半徑r,設(shè)P(m,n)在圓C上,表示出$\overrightarrow{AP}$=(a+m,n),$\overrightarrow{BP}$=(m-a,n),利用∠APB=90°,求出a2,根據(jù)|OP|表示的幾何意義,得出a的取值范圍.
解答 解:∵圓C:(x-3)2+(y-4)2=1,
∴圓心C(3,4),半徑r=1;
設(shè)點P(m,n)在圓C上,則$\overrightarrow{AP}$=(a+m,n),$\overrightarrow{BP}$=(m-a,n);
∵∠APB=90°,
∴$\overrightarrow{AP}⊥\overrightarrow{BP}$,
∴(m+a)(m-a)+n2=0;
即a2=m2+n2;
∴|OP|=$\sqrt{{m}^{2}+{n}^{2}}$,
∴|OP|的最大值是|OC|+r=5+1=6,最小值是|OC|-r=5-1=4;
∴a的取值范圍是[4,6].
故選:A.
點評 本題考查了平面向量的應(yīng)用問題,也考查了直線與圓的應(yīng)用問題,是綜合性題目.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\{\frac{1}{4},4\}$ | B. | {1,4} | C. | $\{1,\frac{1}{4}\}$ | D. | $\{1,\frac{1}{4},4\}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({-\frac{π}{3}+kπ,\frac{π}{6}+kπ})({k∈Z})$ | B. | $({\frac{π}{6}+kπ,\frac{2π}{3}+kπ})({k∈Z})$ | ||
C. | $({-\frac{π}{3}+2kπ,\frac{π}{6}+2kπ})({k∈Z})$ | D. | $({\frac{π}{6}+2kπ,\frac{2π}{3}+2kπ})({k∈Z})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4n-1 | B. | 4n-1 | C. | 2n-1 | D. | 2n-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | p∧q | B. | (¬p)∨q | C. | (¬p)∧(¬q) | D. | p∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com