10.已知函數(shù)f(x)=2cosx(sinx-cosx),x∈R,則f($\frac{π}{4}$)=0,f(x)的最大值是$\sqrt{2}$-1.

分析 將函數(shù)進行化簡,結(jié)合三角函數(shù)的圖象和性質(zhì),即可得到答案.

解答 解:由f(x)=2cosx(sinx-cosx)
?f(x)=2cosxsinx-2cosxcosx)
?f(x)=sin2x-1-cos2x
?f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$)-1
當x=$\frac{π}{4}$時,即f($\frac{π}{4}$)=$\sqrt{2}$sin(2×$\frac{π}{4}$-$\frac{π}{4}$)-1=0;
由正弦函數(shù)的圖象和性質(zhì)可得:sin(2x-$\frac{π}{4}$)的最大值為1.
∴f(x)的最大值為$\sqrt{2}$-1.
故答案為:0,$\sqrt{2}$-1.

點評 本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關(guān)鍵.屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.班主任為了對本班學生的考試成績進行分析,決定從全班36名女同學,24名男同學中隨機抽取一個容量為5的樣本進行分析.
(1)如果按性別比例分層抽樣,男女學生各抽幾個人?
(2)若這5位同學的政治、歷史分數(shù)對應(yīng)如表:
學生編號12345
政治分數(shù)x8991939597
歷史分數(shù)y8789899293
根據(jù)上表數(shù)據(jù),用變量y與x的相關(guān)系數(shù)或散點圖說明政治成績y與歷史成績x之間線性相關(guān)關(guān)系的強弱.如果具有較強的線性相關(guān)關(guān)系,求y與x的線性回歸方程(系數(shù)精確到0.01);如果不具有線性相關(guān)性,請說明理由.
參考公式:相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$;回歸直線的方程是:$\stackrel{∧}{y}$=bx+a,其中對應(yīng)的回歸估計值b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$,$\stackrel{∧}{{y}_{i}}$是與xi對應(yīng)的回歸估計值.參考值:$\sqrt{15}$≈3.9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=x+$\frac{t}{x}$(t>0)有如下性質(zhì):該函數(shù)在(0,$\sqrt{t}$]上是減函數(shù),在[$\sqrt{t}$,+∞)是增函數(shù)
(1)若g(x+$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,求g(x)的解析式
(2)已知函數(shù)h(x)=$\frac{4{x}^{2}-12x-3}{2x+1}$(x∈[0,1]),利用上述性質(zhì),求h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點為A1,右焦點為F2,過點F2作垂直于x軸的直線交該橢圓于M,N兩點,直線A1M的斜率為$\frac{1}{2}$.
(1)求橢圓的離心率;
(2)若△A1MN的外接圓在M處的切線與橢圓交于另一點D,且△F2 MD的面積為$\frac{12}{7}$,求該橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.不等式x(x+3)≥0的解集是(  )
A.{x|-3≤x≤0}B.{x|x≥0或x≤-3}C.{x|0≤x≤3}D.{x|x≥3或x≤0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知角α的終邊落在直線y=-2x上,則sin2α=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,已知四棱錐P-ABCD的底面為矩形,PA=AD=1,AB=2,且PA⊥平面ABCD,E,F(xiàn)分別為AB,PC的中點.
(Ⅰ)求證:EF⊥平面PCD;
(Ⅱ)求二面角C-PD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.直線y=x-k與拋物線x2=y相交于A,B兩點,若線段AB中點的縱坐標為1,則k的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{4}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.等差數(shù)列{an},a1+a4+a7=π,則tan(a3+a5)的值為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

同步練習冊答案