18.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)為A1,右焦點(diǎn)為F2,過點(diǎn)F2作垂直于x軸的直線交該橢圓于M,N兩點(diǎn),直線A1M的斜率為$\frac{1}{2}$.
(1)求橢圓的離心率;
(2)若△A1MN的外接圓在M處的切線與橢圓交于另一點(diǎn)D,且△F2 MD的面積為$\frac{12}{7}$,求該橢圓方程.

分析 (1)由題意可知列方程:$\left\{\begin{array}{l}{x=c}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1}\end{array}\right.$,即可求得M(c,$\frac{^{2}}{a}$),由斜率公式可求得a=2c,e=$\frac{c}{a}$=$\frac{1}{2}$;
(2)由(1)可知,橢圓方程為:$\frac{{x}^{2}}{4{c}^{2}}+\frac{{y}^{2}}{{3c}^{2}}=1$,設(shè)外接圓的圓心為T(t,0),由丨TA丨=丨TM丨得(t+2c)2+(t-c)2+$\frac{9}{4}$c2,求得T(-$\frac{c}{8}$),求得切線方程,代入橢圓方程,求得丨CD丨,根據(jù)點(diǎn)到直線的距離公式及三角形面積公式,代入即可求得c的值,求得橢圓方程.

解答 解:由題意可知:設(shè)M(x,y),由$\left\{\begin{array}{l}{x=c}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1}\end{array}\right.$,
∴M(c,$\frac{^{2}}{a}$),
∴$\frac{\frac{^{2}}{a}}{a+c}$=$\frac{{a}^{2}-{c}^{2}}{a(a+c)}$=$\frac{a-c}{a}$=$\frac{1}{2}$,
∴a=2c,
∴e=$\frac{c}{a}$=$\frac{1}{2}$;
(2)由b2=a2-c2=4c2-c2=3c2
∴b=$\sqrt{3}$c,
∴橢圓方程為:$\frac{{x}^{2}}{4{c}^{2}}+\frac{{y}^{2}}{{3c}^{2}}=1$,M(c,$\frac{3}{2}$c),A1(-2c,0),
設(shè)外接圓的圓心為T(t,0),由丨TA丨=丨TM丨得(t+2c)2=(t-c)2+$\frac{9}{4}$c2
整理得:6tc=-$\frac{3}{4}$c2,
∴t=-$\frac{c}{8}$,
∴T(-$\frac{c}{8}$,0),
∴kDM=$\frac{\frac{3}{2}c}{c+\frac{c}{8}}$=$\frac{4}{3}$,
∴切線斜率k=-$\frac{3}{4}$,
∴切線方程為y-$\frac{3}{2}$c=-$\frac{3}{4}$(x-c),即3x+4y-9c=0,
代入橢圓方程消y得7x2-18cx+11c2=0,
△=182c2-4×7×11c2=16c2>0,
xD=$\frac{11c}{7}$,yD=$\frac{25c}{14}$,
∴丨CD丨=$\sqrt{({x}_{C}-{x}_{D})^{2}+({y}_{C}-{y}_{D})^{2}}$=$\sqrt{(\frac{11c}{7}-c)^{2}+(\frac{15c}{14}-\frac{3c}{2})^{2}}$=$\frac{5c}{7}$,
F2點(diǎn)到CD的距離d=$\frac{丨3c-9c丨}{5}$=$\frac{6c}{5}$,
由S=$\frac{1}{2}$丨CD丨•d,得$\frac{12}{7}$=$\frac{1}{2}$×$\frac{5c}{7}$×$\frac{6c}{5}$=$\frac{3}{7}{c}^{2}$,
∴c2=4,
∴橢圓方程為$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單性質(zhì),直線與橢圓的位置關(guān)系,點(diǎn)到直線的距離公式及三角形面積公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題中,假命題是( 。
A.?x∈R,lgx=0B.?x∈R,tanx=0C.?x∈R,x3=0D.?x∈R,2x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在三棱柱ABC-A1B1C1中,M,N分別為AB,B1C1的中點(diǎn).
(I)求證:MN∥平面AA1C1C;
(II) 若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求證:AB⊥平面CMN
(III)若直線A1B1與平面CMN的交點(diǎn)為D,試確定$\frac{{B}_{1}D}{{A}_{1}{B}_{1}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}-2x,x≥0\\ \frac{1}{x},x<0\end{array}$,且f(1)+f(a)=-2,則a的取值集合為{-1,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.小明愛好玩飛鏢,現(xiàn)有圖形構(gòu)成如圖所示的兩個(gè)邊長(zhǎng)為2的正方形ABCD和OPQR,如果O點(diǎn)正好是正方形ABCD的中心,而正方形OPQR可以繞點(diǎn)O旋轉(zhuǎn),則小明射中陰影部分的概率是$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.等比數(shù)列{an}非常數(shù)列,a3=$\frac{5}{2}$,S3=$\frac{15}{2}$,則公比q=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.1D.-$\frac{1}{2}$或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=2cosx(sinx-cosx),x∈R,則f($\frac{π}{4}$)=0,f(x)的最大值是$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=xlnx-mx2
(Ⅰ)當(dāng)m=0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若$\frac{{x}^{2}-x}{f(x)}$>1對(duì)任意的x∈[$\sqrt{e}$,e2]恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)若x1,x2∈($\frac{1}{e}$,1),x1+x2<1,求證:x1x2<(x1+x24.(參考數(shù)據(jù):e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax2-(a+2)x+lnx,其中a>0,
(1)若x=1是f(x)的極值點(diǎn),求a;
(2)若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(3)設(shè)g(x)=-$\int_0^x$[f(t)-lnt+at]dt,若對(duì)于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得g(x1)•g(x2)=1,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案