正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn滿足:-(n2+n-1)Sn-(n2+n)=0.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令bn=,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:對(duì)于任意的n∈N*,都有Tn<.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練17練習(xí)卷(解析版) 題型:選擇題
某班級(jí)有50名學(xué)生,其中有30名男生和20名女生,隨機(jī)詢問(wèn)了該班五名男生和五名女生在某次數(shù)學(xué)測(cè)驗(yàn)中的成績(jī),五名男生的成績(jī)分別為86,94,88,92,90,五名女生的成績(jī)分別為88,93,93,88,93.下列說(shuō)法一定正確的是( ).
A.這種抽樣方法是一種分層抽樣
B.這種抽樣方法是一種系統(tǒng)抽樣
C.這五名男生成績(jī)的方差大于這五名女生成績(jī)的方差
D.該班男生成績(jī)的平均數(shù)小于該班女生成績(jī)的平均數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練13練習(xí)卷(解析版) 題型:選擇題
如圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F且EF=,則下列結(jié)論中錯(cuò)誤的是( ).
A.AC⊥BE
B.EF∥平面ABCD
C.三棱錐A-BEF的體積為定值
D.異面直線AE,BF所成的角為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練11練習(xí)卷(解析版) 題型:解答題
如圖,四邊形ABCD是邊長(zhǎng)為2的正方形,直線l與平面ABCD平行,E和F是l上的兩個(gè)不同點(diǎn),且EA=ED,FB=FC.E′和F′是平面ABCD內(nèi)的兩點(diǎn),EE′和FF′都與平面ABCD垂直.
(1)證明:直線E′F′垂直且平分線段AD;
(2)若∠EAD=∠EAB=60 °,EF=2.求多面體ABCDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練11練習(xí)卷(解析版) 題型:選擇題
某幾何體的三視圖如圖所示,則該幾何體的體積為( ).
A. B. C.200 D.240
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:選擇題
已知首項(xiàng)為正數(shù)的等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1 006和a1 007是方程x2-2 012x-2 011=0的兩根,則使Sn>0成立的正整數(shù)n的最大值是( ).
A.1006 B.1007 C.2011 D.2012
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:解答題
設(shè)直線l:x-y+m=0與拋物線C:y2=4x交于不同兩點(diǎn)A,B,F 為拋物線的焦點(diǎn).
(1)求△ABF的重心G的軌跡方程;
(2)如果m=-2,求△ABF的外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷4練習(xí)卷(解析版) 題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,E為BD的中點(diǎn),G為PD的中點(diǎn),△DAB≌△DCB,EA=EB=AB=1,PA=,連接CE并延長(zhǎng)交AD于F.
(1)求證:AD⊥平面CFG;
(2)求平面BCP與平面DCP的夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷2練習(xí)卷(解析版) 題型:選擇題
將函數(shù)y=cos 2x的圖象向右平移個(gè)單位,得到函數(shù)y=f(x)·sin x的圖象,則f(x)的表達(dá)式可以是( ).
A.f(x)=-2cos x B.f(x)=2cos x
C.f(x)=sin 2x D.f(x)= (sin 2x+cos 2x)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com