分析 可求得當(dāng)n≥2時(shí),an+1=3an,且a1=1,a2=2;從而解得.
解答 解:∵an=2(an-1+an-2+…+a2+a1)=2Sn-1,
∴an+1=2(an+an-1+…+a2+a1)=2Sn,
兩式作差可得,
an+1-an=2an,
故an+1=3an,
且a1=1,a2=2;
故an=$\left\{\begin{array}{l}{1,n=1}\\{2•{3}^{n-2},n≥2}\end{array}\right.$.
故答案為:n=$\left\{\begin{array}{l}{1,n=1}\\{2•{3}^{n-2},n≥2}\end{array}\right.$.
點(diǎn)評(píng) 本題考查了數(shù)列的通項(xiàng)與前n項(xiàng)和間的關(guān)系應(yīng)用及分類討論的思想應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ②④ | B. | ①②④ | C. | ①④ | D. | ①③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -2 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | -3 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $2\sqrt{3}$ | C. | 5 | D. | $3\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com