3.若p是真命題,q是假命題,則( 。
A.p∧q是真命題B.p∨q是假命題C.¬p是真命題D.¬q是真命題

分析 由已知中p是真命題,q是假命題,根據(jù)復(fù)合命題真假判斷的真值表,可得答案.

解答 解:若p是真命題,q是假命題,
則p∧q是假命題,A錯(cuò)誤;
p∨q是真命題,B錯(cuò)誤;
¬p是假命題,C錯(cuò)誤,
¬q是真命題,D正確;
故選:D

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.定義在(0,+∞)的函數(shù)f(x)滿足9f(x)<xf'(x)<10f(x)且f(x)>0,則$\frac{f(2)}{f(1)}$的取值范圍是(29,210).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知雙曲線x2-y2=1,則它的右焦點(diǎn)到它的漸近線的距離是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=ex+mx2
(1)若m=1,求曲線y=f(x)在(0,f(0))處的切線方程;
(2)若存在實(shí)數(shù)m,n,使得f(x)-n≥0(m,n∈R)恒成立,求m-n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知a>0,b>0,且a+b=1.
(I)若ab≤m恒成立,求m的取值范圍;
(II)若$\frac{4}{a}+\frac{1}≥|{2x-1}|-|{x+2}|$恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn,若a1=d=1,則$\frac{{{S_n}+8}}{a_n}$的最小值$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)全集為U={-4,-2,-1,0,2,4,5,6,7},集合A={-2,0,4,6},B={-1,2,4,6,7},則A∩(∁UB)=( 。
A.{-2,0}B.{-4,-2,0}C.{4,6}D.{-4,-2,0,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知圓C1:x2+y2+4x-4y-3=0,點(diǎn)P為圓C2:x2+y2-4x-12=0上且不在直線C1C2上的任意一點(diǎn),則△PC1C2的面積的最大值為( 。
A.$2\sqrt{5}$B.$4\sqrt{5}$C.$8\sqrt{5}$D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知θ是第三象限角,滿足|sin$\frac{θ}{2}$|=-sin$\frac{θ}{2}$,則$\frac{θ}{2}$是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案