分析 利用柯西不等式,即可得到結(jié)論.
解答 解:由$\left\{\begin{array}{l}{-3t+12≥0}\\{t≥0}\end{array}\right.$,解得0≤t≤4
函數(shù)$y=\sqrt{-3t+12}+\sqrt{t}$的最$y=\sqrt{-3t+12}+\sqrt{t}$=$\sqrt{3}$•$\sqrt{4-t}$+$\sqrt{t}$≤($\sqrt{3+{1}^{2}}$)•$\sqrt{4-t+t}$=4,
當(dāng)且僅當(dāng) $\sqrt{3}$•$\sqrt{4-t}$=$\sqrt{t}$ 時(shí),即t=3時(shí)取等號(hào),
此時(shí)函數(shù)取得最大值為4.
故答案為:4
點(diǎn)評(píng) 本題考查了柯西不等式求函數(shù)最值,關(guān)鍵是對(duì)所給函數(shù)解析式靈活變形,再應(yīng)用柯西不等式,此類型是函數(shù)中兩個(gè)根式變量的系數(shù)不互為相反數(shù)(互為相反數(shù)時(shí)可用基本不等式),但是符號(hào)相反,注意先求函數(shù)的定義域,驗(yàn)證等號(hào)成立的條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com