5.已知集合A={1,4,x},B={1,x2},其中x∈N.且A∪B=A,則x=0.

分析 由已知得B?A,由此利用集合中元素的性質(zhì)能求出結(jié)果.

解答 解:∵集合A={1,4,x},B={1,x2},其中x∈N.A∪B=A,
∴B?A,
∴$\left\{\begin{array}{l}{{x}^{2}=x}\\{x≠1}\end{array}\right.$,解得x=0.
故答案為:0.

點評 本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意并集定義的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,三角形PDC所在的平面與長方形ABCD所在的平面垂直.
(1)證明:BC∥平面PDA;
(2)證明:BC⊥PD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l1:mx-y=0,l2:x+my-m-2=0.
(1)求證:對m∈R,l1與l2的交點P在一個定圓上;
(2)若l1與定圓的另一個交點為P1,l2與定圓的另一個交點為P2,求當(dāng)m在實數(shù)范圍內(nèi)取值時,△PP1P2的面積的最大值及對應(yīng)的m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)$y=\sqrt{-3t+12}+\sqrt{t}$的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=log0.5(x2-ax+4a)在[2,+∞)上單調(diào)遞減,則a的取值范圍是(-2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若不等式x2+ax+b<0的解集為(-3,-1),則不等式bx2+ax+1≤0的解集為[-1,-$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在正方體ABCD-A1B1C1D1中,點P在CDD1C1所在的平面上,滿足∠PBD1=∠A1BD1,則動點P的軌跡是( 。
A.B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,∠ABC=60°,PA=AB=BC,AD=$\frac{2\sqrt{3}}{3}$AB,E是PC的中點.
證明:PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.己知命題p:方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}=1$表示焦點在y軸的橢圓;命題q:關(guān)于x的不等式x2-2x+m>0的解集是R;
若“p∧q”是假命題,“p∨q”是真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案