分析 由y=$\frac{2x+1}{x+a}$$(a≠\frac{1}{2})$,解得x=$\frac{ya-1}{2-y}$(y≠2),把x與y互換可得:y=$\frac{-ay+1}{x-2}$,根據(jù)函數(shù)$f(x)=\frac{2x+1}{x+a}(a≠\frac{1}{2})$的圖象與它的反函數(shù)的圖象重合,即可得出a.
解答 解:由y=$\frac{2x+1}{x+a}$$(a≠\frac{1}{2})$,解得x=$\frac{ya-1}{2-y}$(y≠2),把x與y互換可得:y=$\frac{-ax+1}{x-2}$,
∵函數(shù)$f(x)=\frac{2x+1}{x+a}(a≠\frac{1}{2})$的圖象與它的反函數(shù)的圖象重合,∴a=-2.
故答案為:-2.
點評 本題考查了互為反函數(shù)的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -30 | B. | 15 | C. | -60 | D. | -15 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com