【題目】已知等差數(shù)列{an}的公差d≠0,且a1 , a3 , a13成等比數(shù)列,若a1=1,Sn是數(shù)列{an}前n項的和,則 (n∈N+)的最小值為(
A.4
B.3
C.2 ﹣2
D.

【答案】A
【解析】解:∵a1=1,a1、a3、a13 成等比數(shù)列, ∴(1+2d)2=1+12d.
得d=2或d=0(舍去),
∴an =2n﹣1,
∴Sn= =n2 ,
=
令t=n+1,則 =t+ ﹣2≥6﹣2=4
當且僅當t=3,即n=2時,∴ 的最小值為4.
故選:A.
由題意得(1+2d)2=1+12d,求出公差d的值,得到數(shù)列{an}的通項公式,前n項和,從而可得 ,換元,利用基本不等式,即可求出函數(shù)的最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+x2﹣x,其中a∈R.
(Ⅰ)若a>0,討論f(x)的單調性;
(Ⅱ)當x≥1時,f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)是定義在R上的奇函數(shù),且f(x﹣1)為偶函數(shù),當x∈[0,1]時, ,若函數(shù)g(x)=f(x)﹣x﹣b恰有一個零點,則實數(shù)b的取值集合是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù) 的圖像向左平移 個單位,再向上平移1個單位,得到g(x)的圖像.若g(x1)g(x2)=9,且x1 , x2∈[﹣2π,2π],則2x1﹣x2的最大值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和 ,且a1 , a4是等比數(shù)列{bn}的前兩項,記bn與bn+1之間包含的數(shù)列{an}的項數(shù)為cn , 如b1與b2之間包含{an}中的項為a2 , a3 , 則c1=2.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{ancn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的三個內角A,B,C的對邊依次為a,b,c,外接圓半徑為1,且滿足 ,則△ABC面積的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1的極坐標方程為ρcosθ﹣ρsinθ+2=0,曲線C2的參數(shù)方程為 (α為參數(shù)),將曲線C2上的所有點的橫坐標變?yōu)樵瓉淼?倍,縱坐標變?yōu)樵瓉淼? 倍,得到曲線C3
(1)寫出曲線C1的參數(shù)方程和曲線C3的普通方程;
(2)已知點P(0,2),曲線C1與曲線C3相交于A,B,求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是(  )
A.y=sinx的圖象向右平移個單位得y=cosx的圖象
B.y=cosx的圖象向右平移個單位得y=sinx的圖象
C.當φ>0時,y=sinx的圖象向右平移φ個單位可得y=sin(x+φ)的圖象
D.當φ<0時,y=sinx的圖象向左平移φ個單位可得y=sin(x﹣φ)的圖象

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑. 如圖,在陽馬P﹣ABCD中,側棱PD⊥底面ABCD,且PD=CD,E為PC中點,點F在PB上,且PB⊥平面DEF,連接BD,BE.
(Ⅰ)證明:DE⊥平面PBC;
(Ⅱ)試判斷四面體DBEF是否為鱉臑,若是,寫出其每個面的直角(只需寫出結論);若不是,說明理由;
(Ⅲ)已知AD=2, ,求二面角F﹣AD﹣B的余弦值.

查看答案和解析>>

同步練習冊答案