【題目】當(dāng)x∈[-2,1]時(shí),不等式ax3-x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是______.
【答案】
【解析】 ax3≥x2-4x-3恒成立.當(dāng)x=0時(shí)式子恒成立.∴a∈R,
當(dāng)x>0時(shí),a≥恒成立.令 =t,x∈(0,1],∴t≥1.
∴a≥t-4t2-3t3恒成立.令g(t)=t-4t2-3t3,g′(t)=1-8t-9t2=(t+1)(-9t+1),
∴函數(shù)g′(t)在[1,+∞)上為減函數(shù)而且g′(1)=-16<0,
∴g′(t)<0在[1,+∞)上恒成立.∴g(t)在[1,+∞)上是減函數(shù),
∴g(t)max=g(1)=-6,∴a≥-6;
當(dāng)x<0時(shí),a≤恒成立,∵x∈[-2,0),∴t≤- ,
令g′(t)=0得,t=-1,∴g(t)在(-∞,-1]上為減函數(shù),在(-1,- ]上為增函數(shù),∴g(t)min=g(-1)=-2,∴a≤-2.綜上知-6≤a≤-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)判斷函數(shù)在和的單調(diào)性,并用定義證明在上的單調(diào)性;
(2)若函數(shù)是定義域?yàn)?/span>的偶函數(shù),且時(shí), ,
①當(dāng)時(shí),寫(xiě)出的表達(dá)式;
②若函數(shù)有四個(gè)零點(diǎn),寫(xiě)出的取值范圍(不需要說(shuō)明理由).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓: 過(guò)橢圓: ()的短軸端點(diǎn), , 分別是圓與橢圓上任意兩點(diǎn),且線段長(zhǎng)度的最大值為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)作圓的一條切線交橢圓于, 兩點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小五、小一、小節(jié)、小快、小樂(lè)五位同學(xué)站成一排,若小一不出現(xiàn)在首位和末位,小五、小節(jié)、小樂(lè)中有且僅有兩人相鄰,求能滿足條件的不同排法共有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)當(dāng)m=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】16艘輪船的研究中,船的噸位區(qū)間為[192,3 246](單位:噸),船員的人數(shù)5~32人,船員人數(shù)y關(guān)于噸位x的回歸方程為=9.5+0.006 2x,
(1)若兩艘船的噸位相差1 000,求船員平均相差的人數(shù).
(2)估計(jì)噸位最大的船和最小的船的船員人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】調(diào)查在級(jí)風(fēng)的海上航行中71名乘客的暈船情況,在男人中有12人暈船,25人不暈船,在女人中有10人暈船,24人不暈船
(1)作出性別與暈船關(guān)系的列聯(lián)表;
(2)根據(jù)此資料,能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為級(jí)風(fēng)的海上航行中暈船與性別有關(guān)?
暈船 | 不暈船 | 總計(jì) | |
男人 | |||
女人 | |||
總計(jì) |
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
| 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知每一項(xiàng)都是正數(shù)的數(shù)列滿足, .
(1)用數(shù)學(xué)歸納法證明: ;
(2)證明: ;
(3)記為數(shù)列的前項(xiàng)和,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距為2,離心率為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)作圓的切線,切點(diǎn)分別為,直線與軸交于點(diǎn),過(guò)點(diǎn)作直線交橢圓于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com