A. | $\frac{4}{16}$ | B. | $\frac{3}{16}$ | C. | $\frac{2}{16}$ | D. | $\frac{1}{16}$ |
分析 先求出基本事件總數(shù)n=4×4=16,再用列舉法求出2次抽取數(shù)之和等于4包含的基本事件個數(shù),由此能求出2次抽取數(shù)之和等于4的概率.
解答 解:從集合{1,2,3,4} 中有放回地隨機抽取2次,每次抽取1個數(shù),
基本事件總數(shù)n=4×4=16,
2次抽取數(shù)之和等于4包含聽基本事件有:
(1,3),(3,1),(2,2),共有m=3個,
∴2次抽取數(shù)之和等于4的概率為p=$\frac{m}{n}=\frac{3}{16}$.
故選:B.
點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意列舉法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:填空題
來源: 題型:查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $9\sqrt{3}$ | B. | 9 | C. | 18 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 數(shù)列{an}是以1為首項的等比數(shù)列 | B. | 數(shù)列{an}的通項公式為${a_n}=\frac{n+1}{2^n}$ | ||
C. | 數(shù)列$\left\{{\frac{a_n}{n}}\right\}$是等比數(shù)列,且公比為$\frac{1}{2}$ | D. | 數(shù)列$\left\{{\frac{S_n}{n}}\right\}$是等比數(shù)列,且公比為$\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com