【題目】從某公司生產(chǎn)線生產(chǎn)的某種產(chǎn)品中抽取件,測量這些產(chǎn)品的一項質(zhì)量指標,由檢測結(jié)果得如圖所示的頻率分布直方圖:
(Ⅰ)求這件產(chǎn)品質(zhì)量指標的樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅱ)由直方圖可以認為,這種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.
(i)利用該正態(tài)分布,求;
(ii)已知每件該產(chǎn)品的生產(chǎn)成本為元,每件合格品(質(zhì)量指標值)的定價為元;若為次品(質(zhì)量指標值),除了全額退款外且每件次品還須賠付客戶元。若該公司賣出件這種產(chǎn)品,記表示這件產(chǎn)品的利潤,求.
附:.若,則 .
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系 xOy 中,已知橢圓 C:=1(a>b>0)的離心率為,且過點,點P在第四象限, A為左頂點, B為上頂點, PA交y軸于點C,PB交x軸于點D.
(1) 求橢圓 C 的標準方程;
(2) 求 △PCD 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某教研部門對本地區(qū)甲、乙、丙三所學校高三年級進行教學質(zhì)量抽樣調(diào)查,甲、乙、丙三所學校高三年級班級數(shù)量(單位:個)如下表所示。研究人員用分層抽樣的方法從這三所學校中共抽取6個班級進行調(diào)查.
學校 | 甲 | 乙 | 丙 |
數(shù)量 | 4 | 12 | 8 |
(1)求這6個班級中來自甲、乙、丙三所學校的數(shù)量;
(2)若在這6個班級中隨機抽取2個班級做進一步調(diào)查,
①列舉出所有可能的抽取結(jié)果;
②求這2個班級來自同一個學校的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,長為,寬為的矩形紙片中,為邊的中點,將沿直線翻轉(zhuǎn)(平面),若為線段的中點,則在翻轉(zhuǎn)過程中,下列說法錯誤的是( )
A. 平面
B. 異面直線與所成角是定值
C. 三棱錐體積的最大值是
D. 一定存在某個位置,使
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高鐵是一種快捷的交通工具,為我們的出行提供了極大的方便。某高鐵換乘站設(shè)有編號為①,②,③,④,⑤的五個安全出口,若同時開放其中的兩個安全出口,疏散名乘客所需的時間如下:
安全出口編號 | ①② | ②③ | ③④ | ④⑤ | ①⑤ |
疏散乘客時間(s) | 120 | 220 | 160 | 140 | 200 |
則疏散乘客最快的一個安全出口的編號是( )
A. ①B. ②C. ④D. ⑤
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,且長軸長是短軸長的2倍.
(1)求橢圓的標準方程;
(2)若點在橢圓上運動,點在圓上運動,且總有,求的取值范圍;
(3)過點的動直線交橢圓于、兩點,試問:在此坐標平面上是否存在一個點,使得無論如何轉(zhuǎn)動,以為直徑的圓恒過點?若存在,請求出點的坐標;若不存在,請說明由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】電子計算機誕生于20世紀中葉,是人類最偉大的技術(shù)發(fā)明之一.計算機利用二進制存儲信息,其中最基本單位是“位(bit)”,1位只能存放2種不同的信息:0或l,分別通過電路的斷或通實現(xiàn).“字節(jié)(Byte)”是更大的存儲單位,1Byte=8bit,因此1字節(jié)可存放從00000000(2)至11111111(2)共256種不同的信息.將這256個二進制數(shù)中,所有恰有相鄰兩位數(shù)是1其余各位數(shù)均是0的所有數(shù)相加,則計算結(jié)果用十進制表示為
A. 254B. 381C. 510D. 765
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的矩形ABCD中,AB=AD=2,點E為AD邊上異于A,D兩點的動點,且EF//AB,G為線段ED的中點,現(xiàn)沿EF將四邊形CDEF折起,使得AE與CF的夾角為60°,連接BD,F(xiàn)D.
(1)探究:在線段EF上是否存在一點M,使得GM//平面BDF,若存在,說明點M的位置,若不存在,請說明理由;
(2)求三棱錐G—BDF的體積的最大值,并計算此時DE的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,其左、右頂點分別為點,且點關(guān)于直線對稱的點在直線上.
(1)求橢圓的方程;
(2)若點在橢圓上,點在圓上,且都在第一象限,軸,若直線與軸的交點分別為,判斷是否為定值,若是定值,求出該定值;若不是定值,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com