【題目】如圖,長(zhǎng)為,寬為的矩形紙片中,為邊的中點(diǎn),將沿直線翻轉(zhuǎn)(平面),若為線段的中點(diǎn),則在翻轉(zhuǎn)過程中,下列說法錯(cuò)誤的是( )
A. 平面
B. 異面直線與所成角是定值
C. 三棱錐體積的最大值是
D. 一定存在某個(gè)位置,使
【答案】D
【解析】
對(duì)于A,延長(zhǎng),交于,連接,運(yùn)用中位線定理和線面平行的判定定理,可得平面;對(duì)于B,運(yùn)用平行線的性質(zhì)和解三角形的余弦定理,以及異面直線所成角的定義,求出異面直線所成的角;對(duì)于C,由題意知平面平面時(shí),三棱錐的體積最大,求出即可;對(duì)于D,連接,運(yùn)用線面垂直的判定定理和性質(zhì)定理,可得與垂直,可得結(jié)論;
由題意,對(duì)于,延長(zhǎng),交于,連接,由為的中點(diǎn),
可得為的中點(diǎn),又為的中點(diǎn),可得,平面,
平面,則平面,∴正確;
對(duì)于,,過作,平面,
則是異面直線與所成的角或所成角的補(bǔ)角,且,
在中,,,
則,
則為定值,即為定值,∴正確;
對(duì)于,設(shè)為的中點(diǎn),連接,由直角三角形斜邊的中線長(zhǎng)為斜邊的一半,可得
平面⊥平面時(shí),三棱錐的體積最大,
最大體積為,∴正確;
對(duì)于,連接,可得,若,即有平面,
即有,由在平面中的射影為,
可得與垂直,但與不垂直,則不存在某個(gè)位置,使,∴錯(cuò)誤;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且acos C+asin C-b-c=0.
(1)求A;
(2)若AD為BC邊上的中線,cos B=,AD=,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)若函數(shù)的圖像在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)若在函數(shù)定義域內(nèi),總有成立,試求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)在直角坐標(biāo)系的第一象限內(nèi)的任意兩點(diǎn),作如下定義:,那么稱點(diǎn)是點(diǎn)的“上位點(diǎn)”,同時(shí)點(diǎn)是點(diǎn)的“下位點(diǎn)”.
(1)試寫出點(diǎn)的一個(gè)“上位點(diǎn)”坐標(biāo)和一個(gè)“下位點(diǎn)”坐標(biāo);
(2)設(shè)、、、均為正數(shù),且點(diǎn)是點(diǎn)的上位點(diǎn),請(qǐng)判斷點(diǎn)是否既是點(diǎn)的“下位點(diǎn)”又是點(diǎn)的“上位點(diǎn)”,如果是請(qǐng)證明,如果不是請(qǐng)說明理由;
(3)設(shè)正整數(shù)滿足以下條件:對(duì)任意實(shí)數(shù),總存在,使得點(diǎn)既是點(diǎn)的“下位點(diǎn)”,又是點(diǎn)的“上位點(diǎn)”,求正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種大型醫(yī)療檢查機(jī)器生產(chǎn)商,對(duì)一次性購(gòu)買2臺(tái)機(jī)器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費(fèi)維修2次,超過2次每次收取維修費(fèi)2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費(fèi)維修4次,超過4次每次收取維修費(fèi)1000元.某醫(yī)院準(zhǔn)備一次性購(gòu)買2臺(tái)這種機(jī)器,F(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)購(gòu)買哪種延保方案,為此搜集并整理了50臺(tái)這種機(jī)器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:
維修次數(shù) | 0 | 1 | 2 | 3 |
臺(tái)數(shù) | 5 | 10 | 20 | 15 |
以這50臺(tái)機(jī)器維修次數(shù)的頻率代替1臺(tái)機(jī)器維修次數(shù)發(fā)生的概率,記X表示這2臺(tái)機(jī)器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。
(1)求X的分布列;
(2)以所需延保金及維修費(fèi)用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓與圓:有且僅有兩個(gè)公共點(diǎn),點(diǎn)、、分別是橢圓上的動(dòng)點(diǎn)、左焦點(diǎn)、右焦點(diǎn),三角形面積的最大值是.
(1)求橢圓的方程;
(2)若點(diǎn)在橢圓第一象限部分上運(yùn)動(dòng),過點(diǎn)作圓的切線,過點(diǎn)作的垂線,求證:,交點(diǎn)的縱坐標(biāo)的絕對(duì)值為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某公司生產(chǎn)線生產(chǎn)的某種產(chǎn)品中抽取件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo),由檢測(cè)結(jié)果得如圖所示的頻率分布直方圖:
(Ⅰ)求這件產(chǎn)品質(zhì)量指標(biāo)的樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅱ)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.
(i)利用該正態(tài)分布,求;
(ii)已知每件該產(chǎn)品的生產(chǎn)成本為元,每件合格品(質(zhì)量指標(biāo)值)的定價(jià)為元;若為次品(質(zhì)量指標(biāo)值),除了全額退款外且每件次品還須賠付客戶元。若該公司賣出件這種產(chǎn)品,記表示這件產(chǎn)品的利潤(rùn),求.
附:.若,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列的公差,前項(xiàng)和為,且滿足,
(1)試尋找一個(gè)等差數(shù)列和一個(gè)非負(fù)常數(shù),使得等式對(duì)于任意的正整數(shù)恒成立,并說明你的理由;
(2)對(duì)于(1)中的等差數(shù)列和非負(fù)常數(shù),試求()的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了解社區(qū)群眾體育活動(dòng)的開展情況,擬采用分層抽樣的方法從A,B,C三個(gè)行政區(qū)抽出6個(gè)社區(qū)進(jìn)行調(diào)查.已知A,B,C行政區(qū)中分別有12,18,6個(gè)社區(qū).
(1)求從A,B,C三個(gè)行政區(qū)中分別抽取的社區(qū)個(gè)數(shù);
(2)若從抽得的6個(gè)社區(qū)中隨機(jī)的抽取2個(gè)進(jìn)行調(diào)查結(jié)果的對(duì)比,求抽取的2個(gè)社區(qū)中至少有一個(gè)來(lái)自A行政區(qū)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com