若直線
過(guò)雙曲線
的一個(gè)焦點(diǎn),且與雙曲線的一條漸近線平行.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若過(guò)點(diǎn)
與
軸不平行的直線與雙曲線相交于不同的兩點(diǎn)
的垂直平分線為
,求直線
在
軸上截距的取值范圍.
試題分析:(Ⅰ)由
得
,
,且
,解得
故雙曲線的方程為
.
(Ⅱ)由(Ⅰ)知
,依題意可設(shè)過(guò)點(diǎn)
的直線為
由
得
,
,
,且
設(shè)
的中點(diǎn)
,則
,
故直線
的方程為
,即
所以直線
在
軸上的截距
,由
,且
得
,所以
.即直線
在
軸上的截距的取值范圍為
點(diǎn)評(píng):中檔題,結(jié)合雙曲線的幾何性質(zhì),應(yīng)用“待定系數(shù)法”求得了雙曲線標(biāo)準(zhǔn)方程。研究直線與圓錐曲線的位置關(guān)系,往往應(yīng)用韋達(dá)定理,通過(guò)“整體代換”,簡(jiǎn)化解題過(guò)程,實(shí)現(xiàn)解題目的。(II)中根據(jù)方程組有解,確定得到直線斜率范圍,易于忽視。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知橢圓的焦點(diǎn)為
,
P是橢圓上一動(dòng)點(diǎn),如果延長(zhǎng)
F1P到
Q,使
,那么動(dòng)點(diǎn)
Q的軌跡是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知點(diǎn)
是離心率為
的橢圓
:
上的一點(diǎn),斜率為
的直線
交橢圓
于
、
兩點(diǎn),且
、
、
三點(diǎn)不重合.
(1)求橢圓
的方程;
(2)
的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由?
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
設(shè)F
1、F
2為雙曲線
(
)的兩個(gè)焦點(diǎn),若F
1、F
2、P(0,2
)是正三角形的三個(gè)頂點(diǎn),則雙曲線離心率是( )
A. | B.2 | C. | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知拋物線x2=4py(p>0)與雙曲線
有相同的焦點(diǎn)F,點(diǎn)A 是兩曲線的一個(gè)交點(diǎn),且AF丄y軸,則雙曲線的離心率為
A,
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知圓C的圓心是直線
與x軸的交點(diǎn),且圓C與直線x+y+3=0相切,則圓C的方程為
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知雙曲線
的漸近線方程為
,左焦點(diǎn)為F,過(guò)
的直線為
,原點(diǎn)到直線
的距離是
(1)求雙曲線的方程;
(2)已知直線
交雙曲線于不同的兩點(diǎn)
C,
D,問(wèn)是否存在實(shí)數(shù)
,使得以
CD為直徑的圓經(jīng)過(guò)雙曲線的左焦點(diǎn)
F。若存在,求出
m的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知橢圓
C:
的短軸長(zhǎng)等于焦距,橢圓
C上的點(diǎn)到右焦點(diǎn)
的最短距離為
.
(1)求橢圓
C的方程;
(2)過(guò)點(diǎn)
且斜率為
(
>0)的直線
與
C交于
兩點(diǎn),
是點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn),證明:
三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
曲線C的直角坐標(biāo)方程為
,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為
__________;
查看答案和解析>>