20.函數(shù)f(x)=logax-$\frac{4}{x}$(a>1)在[1,2]上的最大值為0,則a=(  )
A.2B.$\sqrt{2}$C.4D.2$\sqrt{2}$

分析 根據(jù)函數(shù)單調(diào)性的性質(zhì),可得函數(shù)f(x)=logax-$\frac{4}{x}$(a>1)在[1,2]上為增函數(shù),進(jìn)而構(gòu)造方程,解得a值.

解答 解:當(dāng)a>1,x∈[1,2]時,
y=logax為增函數(shù),y=$\frac{4}{x}$為減函數(shù),
故函數(shù)f(x)=logax-$\frac{4}{x}$為增函數(shù),
故當(dāng)x=2時,函數(shù)f(x)取最大值loga2-2=0,
解得:a=$\sqrt{2}$,
故選:B

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)的最值及其幾何意義,函數(shù)的單調(diào)性,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中周期為π且為偶函數(shù)的是( 。
A.y=cos(2x-$\frac{π}{2}$)B.y=sinxcosxC.y=sinx+cosxD.f(x)=|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=x+\frac{a}{x}+lnx(a∈R)$
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的函數(shù)$g(x)=\frac{lnx}{x^2}-f(x)+lnx+2e$有且只有一個零點(diǎn),求a的值(e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知點(diǎn)R(x0,y0)在D:y2=2px上,以R為切點(diǎn)的D的切線的斜率為$\frac{P}{{y}_{0}}$,過Γ外一點(diǎn)A(不在x軸上)作Γ的切線AB、AC,點(diǎn)B、C為切點(diǎn),作平行于BC的切線MN(切點(diǎn)為D),點(diǎn)M、N分別是與AB、AC的交點(diǎn)(如圖).
(1)用B、C的縱坐標(biāo)s、t表示直線BC的斜率;
(2)設(shè)三角形△ABC面積為S,若將由過Γ外一點(diǎn)的兩條切線及第三條切線(平行于兩切線切點(diǎn)的連線)圍成的三角形叫做“切線三角形”,如△AMN,再由M、N作“切線三角形”,并依這樣的方法不斷作切線三角形…,試?yán)谩扒芯三角形”的面積和計算由拋物線及BC所圍成的陰影部分的面積T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{\frac{x}{x-1},x≤0}\\{-{x^2}+6x-5,x>0}\end{array}}\right.$,若函數(shù) y=f[f(x)-a]有6個零點(diǎn),則實(shí)數(shù)a的取值范圍是-4≤a≤-1或a<-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=a(x-1)2+lnx+1.
(I)若函數(shù)f(x)在區(qū)間[2,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)x∈[1,+∞)時,函數(shù)y=f(x)圖象上的點(diǎn)都在$\left\{\begin{array}{l}{x≥1}\\{y-x≤0}\end{array}\right.$所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,E,F(xiàn)分別是AA1,CC1的中點(diǎn),且BE⊥B1F.
(1)求證:B1F⊥平面BEC1
(2)求二面角A-BC1-E的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.過三點(diǎn)(3,10),(7,20),(11,24)的線性回歸方程是$\widehaty=5.75+1.75x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=ln(x+1)+e-x的單調(diào)遞增區(qū)間為( 。
A.(-1,+∞)B.(0,+∞)C.(e,+∞)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

同步練習(xí)冊答案