【題目】已知:函數(shù),其中.
(Ⅰ)若是的極值點(diǎn),求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若在上的最大值是,求的取值范圍.
【答案】(Ⅰ);(Ⅱ)詳見解析;(Ⅲ)
【解析】
試題(Ⅰ)由若是的極值點(diǎn),可得,對(duì)求導(dǎo),,將代入就可求出;(Ⅱ)根據(jù),進(jìn)行討論,首先討論時(shí),.故的單調(diào)增區(qū)間是;單調(diào)減區(qū)間是,再討論時(shí),令,得,或,再比較0與的大小關(guān)系,依次分,,,幾種情況進(jìn)行討論,從而得到函數(shù)的單調(diào)區(qū)間.(Ⅲ)由(Ⅱ)知時(shí),在上單調(diào)遞增,由,知不合題意.當(dāng)時(shí),在的最大值是,由,知不合題意.
當(dāng)時(shí),在單調(diào)遞減,可得在上的最大值是,符合題意.本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,考查分類討論思想在解題中應(yīng)用.
試題解析:(Ⅰ).依題意,令,解得.
經(jīng)檢驗(yàn),時(shí),符合題意.
(Ⅱ)① 當(dāng)時(shí),.
故的單調(diào)增區(qū)間是;單調(diào)減區(qū)間是.
② 當(dāng)時(shí),令,得,或.
當(dāng)時(shí),與的情況如下:
↘ | ↗ | ↘ |
所以,的單調(diào)增區(qū)間是;單調(diào)減區(qū)間是和
當(dāng)時(shí),的單調(diào)減區(qū)間是.
當(dāng)時(shí),,與的情況如下:
↘ | ↗ | ↘ |
所以,的單調(diào)增區(qū)間是;單調(diào)減區(qū)間是和.
③ 當(dāng)時(shí),的單調(diào)增區(qū)間是;單調(diào)減區(qū)間是.
綜上,當(dāng)時(shí),的增區(qū)間是,減區(qū)間是;
當(dāng)時(shí),的增區(qū)間是,減區(qū)間是和;
當(dāng)時(shí),的減區(qū)間是;
當(dāng)時(shí),的增區(qū)間是;減區(qū)間是和.
(Ⅲ)由(Ⅱ)知時(shí),在上單調(diào)遞增,由,知不合題意.
當(dāng)時(shí),在的最大值是,
由,知不合題意.
當(dāng)時(shí),在單調(diào)遞減,
可得在上的最大值是,符合題意.
所以,在上的最大值是時(shí),的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是定義在R上的函數(shù),對(duì)∈R都有,且當(dāng)>0時(shí),<0,且=1.
(1)求的值;
(2)求證:為奇函數(shù);
(3)求在[-2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為,直線l:x+2y=4與橢圓有且只有一個(gè)交點(diǎn)T.
(I)求橢圓C的方程和點(diǎn)T的坐標(biāo);
(Ⅱ)O為坐標(biāo)原點(diǎn),與OT平行的直線l′與橢圓C交于不同的兩點(diǎn)A,B,直線l′與直線l交于點(diǎn)P,試判斷是否為定值,若是請(qǐng)求出定值,若不是請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,過拋物線的焦點(diǎn)且斜率為1的直線與拋物線交于A、B兩點(diǎn),若.
(1)求拋物線的方程;
(2)若AB的中垂線交拋物線于C、D兩點(diǎn),求過A、B、C、D四點(diǎn)的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),總存在實(shí)數(shù),使成立,則稱為關(guān)于參數(shù)的不動(dòng)點(diǎn).
(1)當(dāng),時(shí),求關(guān)于參數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù),函數(shù)恒有關(guān)于參數(shù)兩個(gè)不動(dòng)點(diǎn),求的取值范圍;
(3)當(dāng),時(shí),函數(shù)在上存在兩個(gè)關(guān)于參數(shù)的不動(dòng)點(diǎn),試求參數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】3名男生,4名女生,按照不同的要求排隊(duì),求不同的排隊(duì)方案的方法種數(shù).(要求每問要有適當(dāng)?shù)姆治鲞^程,列式并算出答案)
(1)選其中5人排成一排;
(2)排成前后兩排,前排3人,后排4人;
(3)全體站成一排,男、女各站在一起;
(4)全體站成一排,男生不能站在一起;
(5)全體站成一排,甲不站排頭也不站排尾.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得分).設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.
(1)設(shè)每盤游戲獲得的分?jǐn)?shù)為,求的分布列;
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請(qǐng)運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識(shí)分析分?jǐn)?shù)減少的原因.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著手機(jī)的普及,大學(xué)生迷戀手機(jī)的現(xiàn)象非常嚴(yán)重.為了調(diào)查雙休日大學(xué)生使用手機(jī)的時(shí)間,某機(jī)構(gòu)采用不記名方式隨機(jī)調(diào)查了使用手機(jī)時(shí)間不超過10小時(shí)的50名大學(xué)生,將50人使用手機(jī)的時(shí)間分成5組:,,,,分別加以統(tǒng)計(jì),得到下表,根據(jù)數(shù)據(jù)完成下列問題:
使用時(shí)間/時(shí) | |||||
大學(xué)生/人 | 5 | 10 | 15 | 12 | 8 |
(1)完成頻率分布直方圖,并根據(jù)頻率分布直方圖估計(jì)大學(xué)生使用手機(jī)時(shí)間的中位數(shù)(保留小數(shù)點(diǎn)后兩位);
(2)用分層抽樣的方法從使用手機(jī)時(shí)間在區(qū)間,,的大學(xué)生中抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人取自不同使用時(shí)間區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,,點(diǎn),,分別為棱,,的中點(diǎn).
(1)求證:平面;
(2)求二面角的大。
(3)在線段上是否存在一點(diǎn),使得直線與平面所成的角為?如果存在,求出線段的長(zhǎng);如果不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com