【題目】對于函數(shù),總存在實數(shù),使成立,則稱為關于參數(shù)的不動點.
(1)當,時,求關于參數(shù)的不動點;
(2)若對任意實數(shù),函數(shù)恒有關于參數(shù)兩個不動點,求的取值范圍;
(3)當,時,函數(shù)在上存在兩個關于參數(shù)的不動點,試求參數(shù)的取值范圍.
【答案】(1)4或;(2);(3).
【解析】
(1)當,時,結合已知可得,解方程可求;
(2)由題意可得,恒有2個不同的實數(shù)根,結合二次方程的根的存在條件可求;
(3)當,時,轉化為問題在上有兩個不同實數(shù)解,進行分離,結合對勾函數(shù)的性質可求.
解:(1)當,時,,
由題意可得,即,
解可得或,
故關于參數(shù)1的不動點為4或;
(2)由題意可得,恒有2個不同的實數(shù)根,
則恒有2個不同的實數(shù)根,
所以△恒成立,
即恒成立,
∴,則,
∴的取值范圍是;
(3),時,在上有兩個不同實數(shù)解,
即在,上有兩個不同實數(shù)解,
令,,
結合對勾函數(shù)的性質可知,,
解可得,.
故的范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)證明:在線段BC1存在點D,使得AD⊥A1B,并求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,圓的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求圓的普通方程和直線的直角坐標方程;
(2)若直線與圓交于兩點,是圓上不同于兩點的動點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解某學校高二年級學生的物理成績,從中抽取名學生的物理成績(百分制)作為樣本,按成績分成5組:,頻率分布直方圖如圖所示,成績落在中的人數(shù)為20.
男生 | 女生 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
(1)求和的值;
(2)根據(jù)樣本估計總體的思想,估計該校高二學生物理成績的平均數(shù)和中位數(shù);
(3)成績在80分以上(含80分)為優(yōu)秀,樣本中成績落在中的男、女生人數(shù)比為1:2,成績落在中的男、女生人數(shù)比為3:2,完成列聯(lián)表,并判斷是否所有95%的把握認為物理成績優(yōu)秀與性別有關.
參考公式和數(shù)據(jù):
0.50 | 0.05 | 0.025 | 0.005 | |
0.455 | 3.841 | 5.024 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設、為雙曲線上的兩點,為線段的中點,線段的垂直平分線與雙曲線交于、兩點
(1)確定的取值范圍
(2)試判斷、、、四點是否共圓?并說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)若,求函數(shù)的單調區(qū)間;
(2)若關于的不等式對任意的實數(shù)恒成立,求實數(shù)的取值范圍;
(3)若函數(shù)有個不同的零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,,當時,.數(shù)列滿足.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的通項公式;
(3)若數(shù)列的前項和為,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(,為此函數(shù)的定義域)同時滿足下列兩個條件:①函數(shù)在內單調遞增或單調遞減;②如果存在區(qū)間,使函數(shù)在區(qū)間上的值域為,那么稱,為閉函數(shù);
請解答以下問題:
(1) 求閉函數(shù)符合條件②的區(qū)間;
(2) 判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)若是閉函數(shù),求實數(shù)的取值范圍;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com