分析 設(shè)$\overrightarrow$=(cosθ,sinθ),cosθ>0.$θ∈(-\frac{π}{2},\frac{π}{2})$.$t\overrightarrow{a}-\overrightarrow$=$(\sqrt{3}t-cosθ,-t-sinθ)$,由于對(duì)任意的實(shí)數(shù)t都有|t$\overrightarrow{a}$-$\overrightarrow$|≥1,可得:${t}^{2}+tsin(θ-\frac{π}{3})$≥0,于是$si{n}^{2}(θ-\frac{π}{3})$≤0,解出即可.
解答 解:設(shè)$\overrightarrow$=(cosθ,sinθ),cosθ>0.$θ∈(-\frac{π}{2},\frac{π}{2})$.
$t\overrightarrow{a}-\overrightarrow$=$(\sqrt{3}t-cosθ,-t-sinθ)$,
由|t$\overrightarrow{a}$-$\overrightarrow$|≥1,
∴$(\sqrt{3}t-cosθ)^{2}+(t+sinθ)^{2}$≥1,
化為:${t}^{2}+tsin(θ-\frac{π}{3})$≥0,
∵對(duì)任意的實(shí)數(shù)t上式成立,
∴△=$si{n}^{2}(θ-\frac{π}{3})$≤0,
∴$sin(θ-\frac{π}{3})$=0,
∴$θ-\frac{π}{3}$=0,
解得$θ=\frac{π}{3}$,
∴$\overrightarrow$=$(\frac{1}{2},\frac{\sqrt{3}}{2})$.
點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算、數(shù)量積的運(yùn)算性質(zhì)、一元二次不等式的解集與判別式的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,+∞) | B. | (1,2] | C. | (-∞,2) | D. | (-∞,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com