【題目】已知橢圓,過(guò)點(diǎn)的兩條不同的直線(xiàn)與橢圓E分別相交于ABC,D四點(diǎn),其中A為橢圓E的右頂點(diǎn).

(1)求以AB為直徑的圓的方程;

(2)設(shè)以AB為直徑的圓和以CD為直徑的圓相交于M,N兩點(diǎn),探究直線(xiàn)MN是否經(jīng)過(guò)定點(diǎn),若經(jīng)過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不經(jīng)過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

【答案】(1);(2)經(jīng)過(guò)定點(diǎn),.

【解析】

(1)由已知得AB方程:,與橢圓方程聯(lián)立可求出,則可求出以AB為直徑的圓的圓心和半徑,進(jìn)而可求出圓的方程;

(2)當(dāng)CD斜率存在時(shí),并設(shè)CD方程:,與橢圓方程聯(lián)立,通過(guò)根與系數(shù)的關(guān)系可得以CD為直徑的圓方程,將其與以AB為直徑的圓的方程作差,可得直線(xiàn)MN的方程,進(jìn)而可得直線(xiàn)MN過(guò)的定點(diǎn),當(dāng)CD斜率不存在時(shí),直線(xiàn)MN也過(guò)的定點(diǎn),進(jìn)而可得答案.

(1)由已知,則,故AB方程:,

聯(lián)立直線(xiàn)AB與橢圓方程,消去y可得:,得,即

從而以AB為直徑的圓的圓心為,半徑為

所以圓的方程為,

.;

(2)①當(dāng)CD斜率存在時(shí),并設(shè)CD方程:,

設(shè)

,消去y得:

,

從而,

而以CD為直徑的圓方程為:,

①,

且以AB為直徑的圓方程為②,

②-①得直線(xiàn),

整理得,

可得:

因?yàn)?/span>AB CD兩條直線(xiàn)互異,則,

,

,解得,即直線(xiàn)MN過(guò)定點(diǎn)

②當(dāng)CD斜率不存在時(shí),CD方程:,知,

則以CD為直徑的圓為,

而以AB為直徑的圓方程,

兩式相減得MN方程:,過(guò)點(diǎn);

綜上所述,直線(xiàn)MN過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為分別為橢圓的左右焦點(diǎn),點(diǎn)為橢圓上的一動(dòng)點(diǎn),面積的最大值為2.

1)求橢圓的方程;

2)直線(xiàn)與橢圓的另一個(gè)交點(diǎn)為,點(diǎn),證明:直線(xiàn)與直線(xiàn)關(guān)于軸對(duì)稱(chēng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,bc分別是△ABC三個(gè)內(nèi)角A,B,C所對(duì)的邊,且.

1)求B;

2)若b2,且sinA,sinBsinC成等差數(shù)列,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知曲線(xiàn)為參數(shù)),曲線(xiàn)為參數(shù)),且,點(diǎn)P為曲線(xiàn)的公共點(diǎn).

1)求動(dòng)點(diǎn)P的軌跡方程;

2)在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線(xiàn)l的極坐標(biāo)方程為,求動(dòng)點(diǎn)P到直線(xiàn)l的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),是奇函數(shù).

1)求實(shí)數(shù)m的值;

2)畫(huà)出函數(shù)的圖象,并根據(jù)圖象求解下列問(wèn)題;

①寫(xiě)出函數(shù)的值域;

②若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱柱中,底面是以為底邊的等腰梯形,且.

I)求證:平面平面

(Ⅱ)若,求直線(xiàn)AB與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】作家馬伯庸小說(shuō)《長(zhǎng)安十二時(shí)辰》中,靖安司通過(guò)長(zhǎng)安城內(nèi)的望樓傳遞信息.同名改編電視劇中,望樓傳遞信息的方式有一種如下:如圖所示,在九宮格中,每個(gè)小方格可以在白色和紫色(此處以陰影代表紫色)之間變換,從而一共可以有512種不同的顏色組合,即代表512種不同的信息.現(xiàn)要求每一行,每一列上至多有一個(gè)紫色小方格(如圖所示即滿(mǎn)足要求).則一共可以傳遞______種信息.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)一種產(chǎn)品的原材料費(fèi)為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機(jī)器保養(yǎng)等費(fèi)用為每件0.05x元,又該廠職工工資固定支出12500元.

1)把每件產(chǎn)品的成本費(fèi)Px)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);

2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過(guò)3000件,且產(chǎn)品能全部銷(xiāo)售,根據(jù)市場(chǎng)調(diào)查:每件產(chǎn)品的銷(xiāo)售價(jià)Qx)與產(chǎn)品件數(shù)x有如下關(guān)系:,試問(wèn)生產(chǎn)多少件產(chǎn)品,總利潤(rùn)最高?(總利潤(rùn)=總銷(xiāo)售額-總的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),直線(xiàn)的參數(shù)方程為為參數(shù)),設(shè)原點(diǎn)在圓的內(nèi)部,直線(xiàn)與圓交于、兩點(diǎn);以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求直線(xiàn)和圓的極坐標(biāo)方程,并求的取值范圍;

2)求證:為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案