【題目】已知橢圓,過(guò)點(diǎn)的兩條不同的直線(xiàn)與橢圓E分別相交于A,B和C,D四點(diǎn),其中A為橢圓E的右頂點(diǎn).
(1)求以AB為直徑的圓的方程;
(2)設(shè)以AB為直徑的圓和以CD為直徑的圓相交于M,N兩點(diǎn),探究直線(xiàn)MN是否經(jīng)過(guò)定點(diǎn),若經(jīng)過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不經(jīng)過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
【答案】(1);(2)經(jīng)過(guò)定點(diǎn),.
【解析】
(1)由已知得AB方程:,與橢圓方程聯(lián)立可求出,則可求出以AB為直徑的圓的圓心和半徑,進(jìn)而可求出圓的方程;
(2)當(dāng)CD斜率存在時(shí),并設(shè)CD方程:,與橢圓方程聯(lián)立,通過(guò)根與系數(shù)的關(guān)系可得以CD為直徑的圓方程,將其與以AB為直徑的圓的方程作差,可得直線(xiàn)MN的方程,進(jìn)而可得直線(xiàn)MN過(guò)的定點(diǎn),當(dāng)CD斜率不存在時(shí),直線(xiàn)MN也過(guò)的定點(diǎn),進(jìn)而可得答案.
(1)由已知,則,故AB方程:,
聯(lián)立直線(xiàn)AB與橢圓方程,消去y可得:,得,即,
從而以AB為直徑的圓的圓心為,半徑為,
所以圓的方程為,
即.;
(2)①當(dāng)CD斜率存在時(shí),并設(shè)CD方程:,
設(shè),
由,消去y得:,
故,,
從而,
,
而以CD為直徑的圓方程為:,
即①,
且以AB為直徑的圓方程為②,
②-①得直線(xiàn),
即
整理得,
可得:,
因?yàn)?/span>AB與 CD兩條直線(xiàn)互異,則,
即,
令,解得,即直線(xiàn)MN過(guò)定點(diǎn);
②當(dāng)CD斜率不存在時(shí),CD方程:,知,,
則以CD為直徑的圓為,
而以AB為直徑的圓方程,
兩式相減得MN方程:,過(guò)點(diǎn);
綜上所述,直線(xiàn)MN過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,分別為橢圓的左右焦點(diǎn),點(diǎn)為橢圓上的一動(dòng)點(diǎn),面積的最大值為2.
(1)求橢圓的方程;
(2)直線(xiàn)與橢圓的另一個(gè)交點(diǎn)為,點(diǎn),證明:直線(xiàn)與直線(xiàn)關(guān)于軸對(duì)稱(chēng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c分別是△ABC三個(gè)內(nèi)角A,B,C所對(duì)的邊,且.
(1)求B;
(2)若b=2,且sinA,sinB,sinC成等差數(shù)列,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知曲線(xiàn):(為參數(shù)),曲線(xiàn):(為參數(shù)),且,點(diǎn)P為曲線(xiàn)與的公共點(diǎn).
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線(xiàn)l的極坐標(biāo)方程為,求動(dòng)點(diǎn)P到直線(xiàn)l的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)畫(huà)出函數(shù)的圖象,并根據(jù)圖象求解下列問(wèn)題;
①寫(xiě)出函數(shù)的值域;
②若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱柱中,底面是以為底邊的等腰梯形,且.
(I)求證:平面平面;
(Ⅱ)若,求直線(xiàn)AB與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】作家馬伯庸小說(shuō)《長(zhǎng)安十二時(shí)辰》中,靖安司通過(guò)長(zhǎng)安城內(nèi)的望樓傳遞信息.同名改編電視劇中,望樓傳遞信息的方式有一種如下:如圖所示,在九宮格中,每個(gè)小方格可以在白色和紫色(此處以陰影代表紫色)之間變換,從而一共可以有512種不同的顏色組合,即代表512種不同的信息.現(xiàn)要求每一行,每一列上至多有一個(gè)紫色小方格(如圖所示即滿(mǎn)足要求).則一共可以傳遞______種信息.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)一種產(chǎn)品的原材料費(fèi)為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機(jī)器保養(yǎng)等費(fèi)用為每件0.05x元,又該廠職工工資固定支出12500元.
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過(guò)3000件,且產(chǎn)品能全部銷(xiāo)售,根據(jù)市場(chǎng)調(diào)查:每件產(chǎn)品的銷(xiāo)售價(jià)Q(x)與產(chǎn)品件數(shù)x有如下關(guān)系:,試問(wèn)生產(chǎn)多少件產(chǎn)品,總利潤(rùn)最高?(總利潤(rùn)=總銷(xiāo)售額-總的成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),直線(xiàn)的參數(shù)方程為(為參數(shù)),設(shè)原點(diǎn)在圓的內(nèi)部,直線(xiàn)與圓交于、兩點(diǎn);以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線(xiàn)和圓的極坐標(biāo)方程,并求的取值范圍;
(2)求證:為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com