2
1
(2x-
1
x
)dx
=
 
考點:定積分
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)積分公式直接進(jìn)行計算即可.
解答: 解:
2
1
(2x-
1
x
)dx
=(x2-lnx)
|
2
1
=4-ln2-(1-ln1)=3-ln2,
故答案為:3-ln2.
點評:本題主要考查積分的計算,要求熟練掌握常見函數(shù)的積分公式,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC 中,角A,B,C的對邊分別為a,b,c,且a2+c2-b2=
2
3
3
acsinB.
(1)求角B的大;
(2)若b=
3
,且C=45°,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+x(a∈R,a≠0).
(1)求證:當(dāng)a>0時,對任意x1,x2∈R,都有f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)]
;
(2)如果對任意x∈[0,1]都有|f(x)|≤1,試求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=x2+|x-a|+1(a∈R),下列結(jié)論中正確的是( 。
A、當(dāng)a≥0時,f(x)在(-∞,0)上單調(diào)遞減
B、當(dāng)a≤0時,f(x)在(-∞,0)上單調(diào)遞減
C、當(dāng)a≥
1
2
時,f(x)在(0,+∞)上單調(diào)遞增
D、當(dāng)a≤
1
2
時,f(x)在(0,+∞)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,點A(0,3),直線l:y=2x-4,設(shè)圓C的半徑為1,圓心C在直線l上.
(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(2)當(dāng)圓心C在直線l上移動時,求點A到圓C上的點的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
2
(a x+a -x),(a>0且a≠1).
(1)討論f(x)的奇偶性;
(2)若函數(shù)f(x)的圖象經(jīng)過點(2,
41
9
),求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x+y-3=0及曲線C:(x-3)2+(y-2)2=2,則點M(2,1)( 。
A、在直線l上,但不在曲線C上
B、在直線l上,也在曲線C上
C、不在直線l上,也不在曲線C上
D、不在直線l上,但在曲線C上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,向量
BP
=
1
4
BA
,若
OP
=x
OA
+y
OB
,則x-y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二項式(
x
-
1
3x
)5
展開式中的常數(shù)項為p,且函數(shù)f(x)=
1-x2
,-1≤x≤0
3x2-
p
10
,0<x≤1
,則
1
-1
f(x)dx=
 

查看答案和解析>>

同步練習(xí)冊答案