4.(1-2x)5 (1+3x)4展開式中按x的升冪排列的第三項的系數(shù)是(  )
A.-23B.-24C.-25D.-26

分析 (1-2x)5(1+3x)4的展開式中按x的升冪排列的第3項,即展開式中含x2的項.

解答 解:(1-2x)5(1+3x)4的展開式中按x的升冪排列的第3項,
即展開式中含x2的項C42•(3x)2+C52•(-2x)2+C51•(-2x)C41•(3x)=-26x2
故按x的升冪排列的第三項的系數(shù)是-26,
故選:D.

點(diǎn)評 本題主要考查二項式定理,二項展開式的通項公式,求展開式中某項的系數(shù),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{2x-y-1≤0}\\{x+y+1≥0}\end{array}\right.$,求目標(biāo)函數(shù)z=x-2y的最小值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.函數(shù)f(x)=$\sqrt{3}$cos2ωx+sinωxcosωx-$\frac{{\sqrt{3}}}{2}$(ω>0),其最小正周期為π
(1)求ω
(2)求f(x)在區(qū)間[-$\frac{π}{3},\frac{π}{6}}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow a$=(1,sinx),$\overrightarrow b$=(cosx,$\frac{1}{2}$),其中x∈[-$\frac{π}{2}$,$\frac{π}{2}$].
(1)若$\overrightarrow a$∥$\overrightarrow b$,求實(shí)數(shù)x的值;
(2)若$\overrightarrow a$⊥$\overrightarrow b$,求向量$\overrightarrow a$的模|$\overrightarrow a$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\vec a$=(3,1),$\vec b$=(sinα,cosα),且$\vec a$∥$\vec b$,則tanα=(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某公司計劃2016年在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告總費(fèi)用不超過9萬元,甲、乙電視臺的廣告收費(fèi)標(biāo)準(zhǔn)分別為500元/分和200元/分,假定甲、乙兩個電視臺為該公司所做的廣告,每分鐘能給公司帶來的收益分別為0.3萬元和0.2萬元.問該公司如何分配在甲、乙兩個電視臺的廣告時間,才能使公司的收益最大,最大收益是70萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)有如下兩個命題:
①:關(guān)于x的不等式x2+(a-1)x+a2>0的解集是R;
②:函數(shù)f(x)=x3+4ax-2在(1,+∞)上是增函數(shù).
已知“命題①或命題②”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC的內(nèi)角A,B,C對應(yīng)的邊分別是a,b,c,已知$\frac{sinA}{a}=\frac{{\sqrt{3}cosB}}$,
(1)求B;
(2)若b=2,△ABC的周長為2$\sqrt{3}$+2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.直線l過點(diǎn)(1,1),且與直線x+2y+2016=0平行,則直線l的方程為x+2y-3=0.(答案寫成一般式方程形式)

查看答案和解析>>

同步練習(xí)冊答案