某批產(chǎn)品成箱包裝,每箱5件.一用戶在購進該批產(chǎn)品前先取出3箱,設取出的3箱中,第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)在取出的3箱中,若該用戶從第三箱中有放回的抽取3次(每次一件),求恰有兩次抽到二等品的概率;
(2)在取出的3箱中,若該用戶再從每箱中任意抽取2件產(chǎn)品進行檢驗,用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及數(shù)學期望.
(1)設A表示事件“從第三箱中有放回地抽取3次(每次一件),恰有兩次取到二等品”,
依題意知,每次抽到二等品的概率為
2
5
,
P(A)=
C23
(
2
5
)2×
3
5
=
36
125

(2)ξ可能的取值為0,1,2,3.
P(ξ=0)=
C24
C23
C25
C25
=
18
100
=
9
50
,P(ξ=1)=
C14
C23
C25
C25
+
C24
C13
C12
C25
C25
=
12
25
,
P(ξ=2)=
C14
C13
C12
C25
C25
+
C24
C22
C25
C25
=
15
50
=
3
10
,P(ξ=3)=
C14
C22
C25
C25
=
1
25

ξ的分布列為
ξ 0 1 2 3
P
9
50
12
25
15
50
1
25
數(shù)學期望為Eξ=1×
12
25
+2×
15
50
+3×
1
25
=1.2.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某批產(chǎn)品成箱包裝,每箱5件,一用戶在購進該批產(chǎn)品前先取出3箱,再從每箱中任意出取2件產(chǎn)品進行檢驗.設取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及ξ的數(shù)學期望;
(2)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶就拒絕購買這批產(chǎn)品,求這批產(chǎn)品被用戶拒絕的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某批產(chǎn)品成箱包裝,每箱5件.一用戶在購進該批產(chǎn)品前先取出3箱,再從每箱中任意抽取2件產(chǎn)品進行檢驗.設取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù).
(Ⅰ)求在抽檢的6件產(chǎn)品中恰有一件二等品的概率;
(Ⅱ)求ξ的分布列和數(shù)學期望值;
(Ⅲ)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶就拒絕購買這批產(chǎn)品,求這批產(chǎn)品被用戶拒絕的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某批產(chǎn)品成箱包裝,每箱5件,一用戶在購進該批產(chǎn)品前先取出3箱,再從每箱中任意出取2件產(chǎn)品進行檢驗.設取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(I)求取6件產(chǎn)品中有1件產(chǎn)品是二等品的概率.
(II)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶就拒絕購買這批產(chǎn)品,求這批產(chǎn)品被用戶拒絕的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•瀘州模擬)某批產(chǎn)品成箱包裝,每箱5件,一用戶在購進該批產(chǎn)品前先隨機取出3箱,再從每箱中任意抽取2件產(chǎn)品進行檢驗.設取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶就拒絕購買這批產(chǎn)品,求這批產(chǎn)品被用戶拒絕的概率;
(II)用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及ξ的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•揭陽二模)某批產(chǎn)品成箱包裝,每箱5件.一用戶在購進該批產(chǎn)品前先取出3箱,設取出的3箱中,第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)在取出的3箱中,若該用戶從第三箱中有放回的抽取3次(每次一件),求恰有兩次抽到二等品的概率;
(2)在取出的3箱中,若該用戶再從每箱中任意抽取2件產(chǎn)品進行檢驗,用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案