【題目】已知函數(shù)f(x)=ax﹣x2﹣lnx存在極值,若這些極值的和大于5+ln2,則實(shí)數(shù)a的取值范圍為( )
A.(﹣∞,4)
B.(4,+∞)
C.(﹣∞,2)
D.(2,+∞)
【答案】B
【解析】解:f(x)=ax﹣x2﹣lnx,x∈(0,+∞), 則f′(x)=a﹣2x﹣ =﹣ ,
∵函數(shù)f(x)存在極值,∴f′(x)=0在(0,+∞)上有根,
即2x2﹣ax+1=0在(0,+∞)上有根,∴△=a2﹣8≥0,
顯然當(dāng)△=0時(shí),F(xiàn)(x)無極值,不合題意;
∴方程必有兩個(gè)不等正根,記方程2x2﹣ax+1=0的兩根為x1 , x2 , x1+x2= ,x1x2= ,
f(x1),f(x2)是函數(shù)F(x)的兩個(gè)極值,
由題意得,f(x1)+f(x2)=a(x1+x2)﹣(x12+x22)﹣(lnx1+lnx2)
= ﹣ +1﹣ln >5﹣ln ,
化簡解得,a2>16,滿足△>0,
又x1+x2= >0,即a>0,
∴∴a的取值范圍是(4,+∞),
故選:B.
【考點(diǎn)精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在半徑為R的圓內(nèi),作內(nèi)接等腰△ABC,當(dāng)?shù)走吷细遠(yuǎn)∈(0,t]時(shí),△ABC的面積取得最大值 ,則t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,過對(duì)角線的一個(gè)平面交于點(diǎn),交于.
①四邊形一定是平行四邊形;
②四邊形有可能是正方形;
③四邊形在底面內(nèi)的投影一定是正方形;
④四邊形有可能垂直于平面.
以上結(jié)論正確的為_______________.(寫出所有正確結(jié)論的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+|x﹣1|,a∈R.
(Ⅰ)若不等式f(x)≥2﹣|x﹣1|恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),直線y=m與函數(shù)f(x)的圖象圍成三角形,求m的最大值及此時(shí)圍成的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)行如下程序框圖,如果輸入的t∈[0,5],則輸出S屬于( )
A.[﹣4,10)
B.[﹣5,2]
C.[﹣4,3]
D.[﹣2,5]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐 中,底面 為菱形,且直線 又棱 為 的中點(diǎn),
(Ⅰ) 求證:直線 ;
(Ⅱ) 求直線 與平面 的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 : ,右頂點(diǎn)為 ,離心率為 ,直線 : 與橢圓 相交于不同的兩點(diǎn) , ,過 的中點(diǎn) 作垂直于 的直線 ,設(shè) 與橢圓 相交于不同的兩點(diǎn) , ,且 的中點(diǎn)為 .
(Ⅰ)求橢圓 的方程;
(Ⅱ)設(shè)原點(diǎn) 到直線 的距離為 ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐的底面為直角梯形, .點(diǎn)是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)已知平面底面,且.在棱上是否存在點(diǎn),使?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在上的一點(diǎn)的正北方向的處建一倉庫,并在公路同側(cè)建造一個(gè)正方形無頂中轉(zhuǎn)站(其中邊在上),現(xiàn)從倉庫向和中轉(zhuǎn)站分別修兩條道路,,已知,且,設(shè),.
(1)求關(guān)于的函數(shù)解析式;
(2)如果中轉(zhuǎn)站四周圍墻(即正方形周長)造價(jià)為萬元,兩條道路造價(jià)為萬元,問:取何值時(shí),該公司建中轉(zhuǎn)圍墻和兩條道路總造價(jià)最低?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com